Metamath Proof Explorer


Theorem bl2in

Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion bl2in DMetXPXQXRRPDQ2PballDRQballDR=

Proof

Step Hyp Ref Expression
1 simpl1 DMetXPXQXRRPDQ2DMetX
2 metxmet DMetXD∞MetX
3 1 2 syl DMetXPXQXRRPDQ2D∞MetX
4 simpl2 DMetXPXQXRRPDQ2PX
5 simpl3 DMetXPXQXRRPDQ2QX
6 rexr RR*
7 6 ad2antrl DMetXPXQXRRPDQ2R*
8 simprl DMetXPXQXRRPDQ2R
9 8 8 rexaddd DMetXPXQXRRPDQ2R+𝑒R=R+R
10 8 recnd DMetXPXQXRRPDQ2R
11 10 2timesd DMetXPXQXRRPDQ22R=R+R
12 9 11 eqtr4d DMetXPXQXRRPDQ2R+𝑒R=2R
13 id RR
14 metcl DMetXPXQXPDQ
15 2re 2
16 2pos 0<2
17 15 16 pm3.2i 20<2
18 lemuldiv2 RPDQ20<22RPDQRPDQ2
19 17 18 mp3an3 RPDQ2RPDQRPDQ2
20 13 14 19 syl2anr DMetXPXQXR2RPDQRPDQ2
21 20 biimprd DMetXPXQXRRPDQ22RPDQ
22 21 impr DMetXPXQXRRPDQ22RPDQ
23 12 22 eqbrtrd DMetXPXQXRRPDQ2R+𝑒RPDQ
24 bldisj D∞MetXPXQXR*R*R+𝑒RPDQPballDRQballDR=
25 3 4 5 7 7 23 24 syl33anc DMetXPXQXRRPDQ2PballDRQballDR=