Metamath Proof Explorer


Theorem bloval

Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses bloval.3 N=UnormOpOLDW
bloval.4 L=ULnOpW
bloval.5 B=UBLnOpW
Assertion bloval UNrmCVecWNrmCVecB=tL|Nt<+∞

Proof

Step Hyp Ref Expression
1 bloval.3 N=UnormOpOLDW
2 bloval.4 L=ULnOpW
3 bloval.5 B=UBLnOpW
4 oveq1 u=UuLnOpw=ULnOpw
5 oveq1 u=UunormOpOLDw=UnormOpOLDw
6 5 fveq1d u=UunormOpOLDwt=UnormOpOLDwt
7 6 breq1d u=UunormOpOLDwt<+∞UnormOpOLDwt<+∞
8 4 7 rabeqbidv u=UtuLnOpw|unormOpOLDwt<+∞=tULnOpw|UnormOpOLDwt<+∞
9 oveq2 w=WULnOpw=ULnOpW
10 9 2 eqtr4di w=WULnOpw=L
11 oveq2 w=WUnormOpOLDw=UnormOpOLDW
12 11 1 eqtr4di w=WUnormOpOLDw=N
13 12 fveq1d w=WUnormOpOLDwt=Nt
14 13 breq1d w=WUnormOpOLDwt<+∞Nt<+∞
15 10 14 rabeqbidv w=WtULnOpw|UnormOpOLDwt<+∞=tL|Nt<+∞
16 df-blo BLnOp=uNrmCVec,wNrmCVectuLnOpw|unormOpOLDwt<+∞
17 2 ovexi LV
18 17 rabex tL|Nt<+∞V
19 8 15 16 18 ovmpo UNrmCVecWNrmCVecUBLnOpW=tL|Nt<+∞
20 3 19 eqtrid UNrmCVecWNrmCVecB=tL|Nt<+∞