Metamath Proof Explorer


Theorem bnj1137

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1137.1 B=predXARytrClXARtrClyAR
Assertion bnj1137 RFrSeAXATrFoBAR

Proof

Step Hyp Ref Expression
1 bnj1137.1 B=predXARytrClXARtrClyAR
2 1 eleq2i vBvpredXARytrClXARtrClyAR
3 elun vpredXARytrClXARtrClyARvpredXARvytrClXARtrClyAR
4 2 3 bitri vBvpredXARvytrClXARtrClyAR
5 bnj213 predXARA
6 5 sseli vpredXARvA
7 bnj906 RFrSeAvApredvARtrClvAR
8 7 adantlr RFrSeAXAvApredvARtrClvAR
9 6 8 sylan2 RFrSeAXAvpredXARpredvARtrClvAR
10 bnj906 RFrSeAXApredXARtrClXAR
11 10 sselda RFrSeAXAvpredXARvtrClXAR
12 bnj18eq1 y=vtrClyAR=trClvAR
13 12 ssiun2s vtrClXARtrClvARytrClXARtrClyAR
14 11 13 syl RFrSeAXAvpredXARtrClvARytrClXARtrClyAR
15 9 14 sstrd RFrSeAXAvpredXARpredvARytrClXARtrClyAR
16 bnj1147 trClyARA
17 16 rgenw ytrClXARtrClyARA
18 iunss ytrClXARtrClyARAytrClXARtrClyARA
19 17 18 mpbir ytrClXARtrClyARA
20 19 sseli vytrClXARtrClyARvA
21 20 8 sylan2 RFrSeAXAvytrClXARtrClyARpredvARtrClvAR
22 bnj1125 RFrSeAXAytrClXARtrClyARtrClXAR
23 22 3expia RFrSeAXAytrClXARtrClyARtrClXAR
24 23 ralrimiv RFrSeAXAytrClXARtrClyARtrClXAR
25 iunss ytrClXARtrClyARtrClXARytrClXARtrClyARtrClXAR
26 24 25 sylibr RFrSeAXAytrClXARtrClyARtrClXAR
27 26 sselda RFrSeAXAvytrClXARtrClyARvtrClXAR
28 27 13 syl RFrSeAXAvytrClXARtrClyARtrClvARytrClXARtrClyAR
29 21 28 sstrd RFrSeAXAvytrClXARtrClyARpredvARytrClXARtrClyAR
30 15 29 jaodan RFrSeAXAvpredXARvytrClXARtrClyARpredvARytrClXARtrClyAR
31 ssun2 ytrClXARtrClyARpredXARytrClXARtrClyAR
32 31 1 sseqtrri ytrClXARtrClyARB
33 30 32 sstrdi RFrSeAXAvpredXARvytrClXARtrClyARpredvARB
34 4 33 sylan2b RFrSeAXAvBpredvARB
35 34 ralrimiva RFrSeAXAvBpredvARB
36 df-bnj19 TrFoBARvBpredvARB
37 35 36 sylibr RFrSeAXATrFoBAR