| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1137.1 |
⊢ 𝐵 = ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 2 |
1
|
eleq2i |
⊢ ( 𝑣 ∈ 𝐵 ↔ 𝑣 ∈ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
elun |
⊢ ( 𝑣 ∈ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 4 |
2 3
|
bitri |
⊢ ( 𝑣 ∈ 𝐵 ↔ ( 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 5 |
|
bnj213 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 6 |
5
|
sseli |
⊢ ( 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) → 𝑣 ∈ 𝐴 ) |
| 7 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑣 ∈ 𝐴 ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑣 , 𝐴 , 𝑅 ) ) |
| 8 |
7
|
adantlr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑣 , 𝐴 , 𝑅 ) ) |
| 9 |
6 8
|
sylan2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑣 , 𝐴 , 𝑅 ) ) |
| 10 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 11 |
10
|
sselda |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → 𝑣 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 12 |
|
bnj18eq1 |
⊢ ( 𝑦 = 𝑣 → trCl ( 𝑦 , 𝐴 , 𝑅 ) = trCl ( 𝑣 , 𝐴 , 𝑅 ) ) |
| 13 |
12
|
ssiun2s |
⊢ ( 𝑣 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑣 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑣 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 15 |
9 14
|
sstrd |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 16 |
|
bnj1147 |
⊢ trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 17 |
16
|
rgenw |
⊢ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 18 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 ) |
| 19 |
17 18
|
mpbir |
⊢ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 20 |
19
|
sseli |
⊢ ( 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) → 𝑣 ∈ 𝐴 ) |
| 21 |
20 8
|
sylan2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑣 , 𝐴 , 𝑅 ) ) |
| 22 |
|
bnj1125 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 23 |
22
|
3expia |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
| 24 |
23
|
ralrimiv |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 25 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 27 |
26
|
sselda |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑣 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 28 |
27 13
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑣 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 29 |
21 28
|
sstrd |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 30 |
15 29
|
jaodan |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 31 |
|
ssun2 |
⊢ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( pred ( 𝑋 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 32 |
31 1
|
sseqtrri |
⊢ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 |
| 33 |
30 32
|
sstrdi |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑣 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ∨ 𝑣 ∈ ∪ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 34 |
4 33
|
sylan2b |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐵 ) → pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 35 |
34
|
ralrimiva |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑣 ∈ 𝐵 pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 36 |
|
df-bnj19 |
⊢ ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∀ 𝑣 ∈ 𝐵 pred ( 𝑣 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 37 |
35 36
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → TrFo ( 𝐵 , 𝐴 , 𝑅 ) ) |