| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1137.1 |
|- B = ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 2 |
1
|
eleq2i |
|- ( v e. B <-> v e. ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) |
| 3 |
|
elun |
|- ( v e. ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) <-> ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) |
| 4 |
2 3
|
bitri |
|- ( v e. B <-> ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) |
| 5 |
|
bnj213 |
|- _pred ( X , A , R ) C_ A |
| 6 |
5
|
sseli |
|- ( v e. _pred ( X , A , R ) -> v e. A ) |
| 7 |
|
bnj906 |
|- ( ( R _FrSe A /\ v e. A ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
| 8 |
7
|
adantlr |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. A ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
| 9 |
6 8
|
sylan2 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
| 10 |
|
bnj906 |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
| 11 |
10
|
sselda |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> v e. _trCl ( X , A , R ) ) |
| 12 |
|
bnj18eq1 |
|- ( y = v -> _trCl ( y , A , R ) = _trCl ( v , A , R ) ) |
| 13 |
12
|
ssiun2s |
|- ( v e. _trCl ( X , A , R ) -> _trCl ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 14 |
11 13
|
syl |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> _trCl ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 15 |
9 14
|
sstrd |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. _pred ( X , A , R ) ) -> _pred ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 16 |
|
bnj1147 |
|- _trCl ( y , A , R ) C_ A |
| 17 |
16
|
rgenw |
|- A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A |
| 18 |
|
iunss |
|- ( U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A <-> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A ) |
| 19 |
17 18
|
mpbir |
|- U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ A |
| 20 |
19
|
sseli |
|- ( v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) -> v e. A ) |
| 21 |
20 8
|
sylan2 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> _pred ( v , A , R ) C_ _trCl ( v , A , R ) ) |
| 22 |
|
bnj1125 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) ) -> _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 23 |
22
|
3expia |
|- ( ( R _FrSe A /\ X e. A ) -> ( y e. _trCl ( X , A , R ) -> _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) ) |
| 24 |
23
|
ralrimiv |
|- ( ( R _FrSe A /\ X e. A ) -> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 25 |
|
iunss |
|- ( U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) <-> A. y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 26 |
24 25
|
sylibr |
|- ( ( R _FrSe A /\ X e. A ) -> U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ _trCl ( X , A , R ) ) |
| 27 |
26
|
sselda |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> v e. _trCl ( X , A , R ) ) |
| 28 |
27 13
|
syl |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> _trCl ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 29 |
21 28
|
sstrd |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) -> _pred ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 30 |
15 29
|
jaodan |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) -> _pred ( v , A , R ) C_ U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 31 |
|
ssun2 |
|- U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) |
| 32 |
31 1
|
sseqtrri |
|- U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) C_ B |
| 33 |
30 32
|
sstrdi |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ( v e. _pred ( X , A , R ) \/ v e. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) ) -> _pred ( v , A , R ) C_ B ) |
| 34 |
4 33
|
sylan2b |
|- ( ( ( R _FrSe A /\ X e. A ) /\ v e. B ) -> _pred ( v , A , R ) C_ B ) |
| 35 |
34
|
ralrimiva |
|- ( ( R _FrSe A /\ X e. A ) -> A. v e. B _pred ( v , A , R ) C_ B ) |
| 36 |
|
df-bnj19 |
|- ( _TrFo ( B , A , R ) <-> A. v e. B _pred ( v , A , R ) C_ B ) |
| 37 |
35 36
|
sylibr |
|- ( ( R _FrSe A /\ X e. A ) -> _TrFo ( B , A , R ) ) |