Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1286.1 | |
|
bnj1286.2 | |
||
bnj1286.3 | |
||
bnj1286.4 | |
||
bnj1286.5 | |
||
bnj1286.6 | |
||
bnj1286.7 | |
||
Assertion | bnj1286 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1286.1 | |
|
2 | bnj1286.2 | |
|
3 | bnj1286.3 | |
|
4 | bnj1286.4 | |
|
5 | bnj1286.5 | |
|
6 | bnj1286.6 | |
|
7 | bnj1286.7 | |
|
8 | 1 2 3 4 5 6 7 | bnj1256 | |
9 | 8 | bnj1196 | |
10 | 1 | bnj1517 | |
11 | 10 | adantr | |
12 | fndm | |
|
13 | sseq2 | |
|
14 | 13 | raleqbi1dv | |
15 | 12 14 | syl | |
16 | 15 | adantl | |
17 | 11 16 | mpbird | |
18 | 9 17 | bnj593 | |
19 | 18 | bnj937 | |
20 | 7 19 | bnj835 | |
21 | 5 | ssrab3 | |
22 | 4 | bnj1292 | |
23 | 21 22 | sstri | |
24 | 23 | sseli | |
25 | 7 24 | bnj836 | |
26 | 20 25 | bnj1294 | |
27 | 1 2 3 4 5 6 7 | bnj1259 | |
28 | 27 | bnj1196 | |
29 | 10 | adantr | |
30 | fndm | |
|
31 | sseq2 | |
|
32 | 31 | raleqbi1dv | |
33 | 30 32 | syl | |
34 | 33 | adantl | |
35 | 29 34 | mpbird | |
36 | 28 35 | bnj593 | |
37 | 36 | bnj937 | |
38 | 7 37 | bnj835 | |
39 | 4 | bnj1293 | |
40 | 21 39 | sstri | |
41 | 40 | sseli | |
42 | 7 41 | bnj836 | |
43 | 38 42 | bnj1294 | |
44 | 26 43 | ssind | |
45 | 44 4 | sseqtrrdi | |