Metamath Proof Explorer


Theorem bnj1286

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1286.1 B=d|dAxdpredxARd
bnj1286.2 Y=xfpredxAR
bnj1286.3 C=f|dBfFndxdfx=GY
bnj1286.4 D=domgdomh
bnj1286.5 E=xD|gxhx
bnj1286.6 φRFrSeAgChCgDhD
bnj1286.7 ψφxEyE¬yRx
Assertion bnj1286 ψpredxARD

Proof

Step Hyp Ref Expression
1 bnj1286.1 B=d|dAxdpredxARd
2 bnj1286.2 Y=xfpredxAR
3 bnj1286.3 C=f|dBfFndxdfx=GY
4 bnj1286.4 D=domgdomh
5 bnj1286.5 E=xD|gxhx
6 bnj1286.6 φRFrSeAgChCgDhD
7 bnj1286.7 ψφxEyE¬yRx
8 1 2 3 4 5 6 7 bnj1256 φdBgFnd
9 8 bnj1196 φddBgFnd
10 1 bnj1517 dBxdpredxARd
11 10 adantr dBgFndxdpredxARd
12 fndm gFnddomg=d
13 sseq2 domg=dpredxARdomgpredxARd
14 13 raleqbi1dv domg=dxdomgpredxARdomgxdpredxARd
15 12 14 syl gFndxdomgpredxARdomgxdpredxARd
16 15 adantl dBgFndxdomgpredxARdomgxdpredxARd
17 11 16 mpbird dBgFndxdomgpredxARdomg
18 9 17 bnj593 φdxdomgpredxARdomg
19 18 bnj937 φxdomgpredxARdomg
20 7 19 bnj835 ψxdomgpredxARdomg
21 5 ssrab3 ED
22 4 bnj1292 Ddomg
23 21 22 sstri Edomg
24 23 sseli xExdomg
25 7 24 bnj836 ψxdomg
26 20 25 bnj1294 ψpredxARdomg
27 1 2 3 4 5 6 7 bnj1259 φdBhFnd
28 27 bnj1196 φddBhFnd
29 10 adantr dBhFndxdpredxARd
30 fndm hFnddomh=d
31 sseq2 domh=dpredxARdomhpredxARd
32 31 raleqbi1dv domh=dxdomhpredxARdomhxdpredxARd
33 30 32 syl hFndxdomhpredxARdomhxdpredxARd
34 33 adantl dBhFndxdomhpredxARdomhxdpredxARd
35 29 34 mpbird dBhFndxdomhpredxARdomh
36 28 35 bnj593 φdxdomhpredxARdomh
37 36 bnj937 φxdomhpredxARdomh
38 7 37 bnj835 ψxdomhpredxARdomh
39 4 bnj1293 Ddomh
40 21 39 sstri Edomh
41 40 sseli xExdomh
42 7 41 bnj836 ψxdomh
43 38 42 bnj1294 ψpredxARdomh
44 26 43 ssind ψpredxARdomgdomh
45 44 4 sseqtrrdi ψpredxARD