Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1296.1 | |
|
bnj1296.2 | |
||
bnj1296.3 | |
||
bnj1296.4 | |
||
bnj1296.5 | |
||
bnj1296.6 | |
||
bnj1296.7 | |
||
bnj1296.18 | |
||
bnj1296.9 | |
||
bnj1296.10 | |
||
bnj1296.11 | |
||
bnj1296.12 | |
||
Assertion | bnj1296 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1296.1 | |
|
2 | bnj1296.2 | |
|
3 | bnj1296.3 | |
|
4 | bnj1296.4 | |
|
5 | bnj1296.5 | |
|
6 | bnj1296.6 | |
|
7 | bnj1296.7 | |
|
8 | bnj1296.18 | |
|
9 | bnj1296.9 | |
|
10 | bnj1296.10 | |
|
11 | bnj1296.11 | |
|
12 | bnj1296.12 | |
|
13 | 8 | opeq2d | |
14 | 13 9 11 | 3eqtr4g | |
15 | 14 | fveq2d | |
16 | 10 | bnj1436 | |
17 | fndm | |
|
18 | 17 | anim1i | |
19 | 16 18 | bnj31 | |
20 | raleq | |
|
21 | 20 | pm5.32i | |
22 | 21 | rexbii | |
23 | 19 22 | sylibr | |
24 | simpr | |
|
25 | 23 24 | bnj31 | |
26 | 25 | bnj1265 | |
27 | 2 3 9 10 | bnj1234 | |
28 | 26 27 | eleq2s | |
29 | 6 28 | bnj770 | |
30 | 7 29 | bnj835 | |
31 | 4 | bnj1292 | |
32 | 5 7 | bnj1212 | |
33 | 31 32 | bnj1213 | |
34 | 30 33 | bnj1294 | |
35 | 12 | bnj1436 | |
36 | fndm | |
|
37 | 36 | anim1i | |
38 | 35 37 | bnj31 | |
39 | raleq | |
|
40 | 39 | pm5.32i | |
41 | 40 | rexbii | |
42 | 38 41 | sylibr | |
43 | simpr | |
|
44 | 42 43 | bnj31 | |
45 | 44 | bnj1265 | |
46 | 2 3 11 12 | bnj1234 | |
47 | 45 46 | eleq2s | |
48 | 6 47 | bnj771 | |
49 | 7 48 | bnj835 | |
50 | 4 | bnj1293 | |
51 | 50 32 | bnj1213 | |
52 | 49 51 | bnj1294 | |
53 | 15 34 52 | 3eqtr4d | |