Metamath Proof Explorer


Theorem bnj1296

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1296.1 B=d|dAxdpredxARd
bnj1296.2 Y=xfpredxAR
bnj1296.3 C=f|dBfFndxdfx=GY
bnj1296.4 D=domgdomh
bnj1296.5 E=xD|gxhx
bnj1296.6 φRFrSeAgChCgDhD
bnj1296.7 ψφxEyE¬yRx
bnj1296.18 ψgpredxAR=hpredxAR
bnj1296.9 Z=xgpredxAR
bnj1296.10 K=g|dBgFndxdgx=GZ
bnj1296.11 W=xhpredxAR
bnj1296.12 L=h|dBhFndxdhx=GW
Assertion bnj1296 ψgx=hx

Proof

Step Hyp Ref Expression
1 bnj1296.1 B=d|dAxdpredxARd
2 bnj1296.2 Y=xfpredxAR
3 bnj1296.3 C=f|dBfFndxdfx=GY
4 bnj1296.4 D=domgdomh
5 bnj1296.5 E=xD|gxhx
6 bnj1296.6 φRFrSeAgChCgDhD
7 bnj1296.7 ψφxEyE¬yRx
8 bnj1296.18 ψgpredxAR=hpredxAR
9 bnj1296.9 Z=xgpredxAR
10 bnj1296.10 K=g|dBgFndxdgx=GZ
11 bnj1296.11 W=xhpredxAR
12 bnj1296.12 L=h|dBhFndxdhx=GW
13 8 opeq2d ψxgpredxAR=xhpredxAR
14 13 9 11 3eqtr4g ψZ=W
15 14 fveq2d ψGZ=GW
16 10 bnj1436 gKdBgFndxdgx=GZ
17 fndm gFnddomg=d
18 17 anim1i gFndxdgx=GZdomg=dxdgx=GZ
19 16 18 bnj31 gKdBdomg=dxdgx=GZ
20 raleq domg=dxdomggx=GZxdgx=GZ
21 20 pm5.32i domg=dxdomggx=GZdomg=dxdgx=GZ
22 21 rexbii dBdomg=dxdomggx=GZdBdomg=dxdgx=GZ
23 19 22 sylibr gKdBdomg=dxdomggx=GZ
24 simpr domg=dxdomggx=GZxdomggx=GZ
25 23 24 bnj31 gKdBxdomggx=GZ
26 25 bnj1265 gKxdomggx=GZ
27 2 3 9 10 bnj1234 C=K
28 26 27 eleq2s gCxdomggx=GZ
29 6 28 bnj770 φxdomggx=GZ
30 7 29 bnj835 ψxdomggx=GZ
31 4 bnj1292 Ddomg
32 5 7 bnj1212 ψxD
33 31 32 bnj1213 ψxdomg
34 30 33 bnj1294 ψgx=GZ
35 12 bnj1436 hLdBhFndxdhx=GW
36 fndm hFnddomh=d
37 36 anim1i hFndxdhx=GWdomh=dxdhx=GW
38 35 37 bnj31 hLdBdomh=dxdhx=GW
39 raleq domh=dxdomhhx=GWxdhx=GW
40 39 pm5.32i domh=dxdomhhx=GWdomh=dxdhx=GW
41 40 rexbii dBdomh=dxdomhhx=GWdBdomh=dxdhx=GW
42 38 41 sylibr hLdBdomh=dxdomhhx=GW
43 simpr domh=dxdomhhx=GWxdomhhx=GW
44 42 43 bnj31 hLdBxdomhhx=GW
45 44 bnj1265 hLxdomhhx=GW
46 2 3 11 12 bnj1234 C=L
47 45 46 eleq2s hCxdomhhx=GW
48 6 47 bnj771 φxdomhhx=GW
49 7 48 bnj835 ψxdomhhx=GW
50 4 bnj1293 Ddomh
51 50 32 bnj1213 ψxdomh
52 49 51 bnj1294 ψhx=GW
53 15 34 52 3eqtr4d ψgx=hx