Metamath Proof Explorer


Theorem bnj1384

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1384.1 B=d|dAxdpredxARd
bnj1384.2 Y=xfpredxAR
bnj1384.3 C=f|dBfFndxdfx=GY
bnj1384.4 τfCdomf=xtrClxAR
bnj1384.5 D=xA|¬fτ
bnj1384.6 ψRFrSeAD
bnj1384.7 χψxDyD¬yRx
bnj1384.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1384.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1384.10 P=H
Assertion bnj1384 RFrSeAFunP

Proof

Step Hyp Ref Expression
1 bnj1384.1 B=d|dAxdpredxARd
2 bnj1384.2 Y=xfpredxAR
3 bnj1384.3 C=f|dBfFndxdfx=GY
4 bnj1384.4 τfCdomf=xtrClxAR
5 bnj1384.5 D=xA|¬fτ
6 bnj1384.6 ψRFrSeAD
7 bnj1384.7 χψxDyD¬yRx
8 bnj1384.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1384.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1384.10 P=H
11 1 2 3 4 8 bnj1373 Could not format ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |-
12 1 2 3 4 5 6 7 8 9 10 11 bnj1371 fHFunf
13 12 rgen fHFunf
14 id RFrSeARFrSeA
15 1 2 3 4 5 6 7 8 9 bnj1374 fHfC
16 nfab1 Could not format F/_ f { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- F/_ f { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
17 9 16 nfcxfr _fH
18 17 nfcri fgH
19 nfab1 _ff|dBfFndxdfx=GY
20 3 19 nfcxfr _fC
21 20 nfcri fgC
22 18 21 nfim fgHgC
23 eleq1w f=gfHgH
24 eleq1w f=gfCgC
25 23 24 imbi12d f=gfHfCgHgC
26 22 25 15 chvarfv gHgC
27 eqid domfdomg=domfdomg
28 1 2 3 27 bnj1326 RFrSeAfCgCfdomfdomg=gdomfdomg
29 14 15 26 28 syl3an RFrSeAfHgHfdomfdomg=gdomfdomg
30 29 3expib RFrSeAfHgHfdomfdomg=gdomfdomg
31 30 ralrimivv RFrSeAfHgHfdomfdomg=gdomfdomg
32 biid fHFunffHFunf
33 biid fHFunffHgHfdomfdomg=gdomfdomgfHFunffHgHfdomfdomg=gdomfdomg
34 9 bnj1317 zHfzH
35 32 27 33 34 bnj1386 fHFunffHgHfdomfdomg=gdomfdomgFunH
36 13 31 35 sylancr RFrSeAFunH
37 10 funeqi FunPFunH
38 36 37 sylibr RFrSeAFunP