Metamath Proof Explorer


Theorem bnj548

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj548.1 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj548.2 B=yfipredyAR
bnj548.3 K=yGipredyAR
bnj548.4 G=fmC
bnj548.5 RFrSeAτσGFnn
Assertion bnj548 RFrSeAτσimB=K

Proof

Step Hyp Ref Expression
1 bnj548.1 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
2 bnj548.2 B=yfipredyAR
3 bnj548.3 K=yGipredyAR
4 bnj548.4 G=fmC
5 bnj548.5 RFrSeAτσGFnn
6 5 fnfund RFrSeAτσFunG
7 6 adantr RFrSeAτσimFunG
8 1 simp1bi τfFnm
9 fndm fFnmdomf=m
10 eleq2 domf=midomfim
11 10 biimpar domf=mimidomf
12 9 11 sylan fFnmimidomf
13 8 12 sylan τimidomf
14 13 3ad2antl2 RFrSeAτσimidomf
15 7 14 jca RFrSeAτσimFunGidomf
16 4 bnj931 fG
17 15 16 jctil RFrSeAτσimfGFunGidomf
18 3anan12 FunGfGidomffGFunGidomf
19 17 18 sylibr RFrSeAτσimFunGfGidomf
20 funssfv FunGfGidomfGi=fi
21 iuneq1 Gi=fiyGipredyAR=yfipredyAR
22 21 eqcomd Gi=fiyfipredyAR=yGipredyAR
23 22 2 3 3eqtr4g Gi=fiB=K
24 19 20 23 3syl RFrSeAτσimB=K