Metamath Proof Explorer


Theorem bnsscmcl

Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses bnsscmcl.x X=BaseSetU
bnsscmcl.d D=IndMetU
bnsscmcl.j J=MetOpenD
bnsscmcl.h H=SubSpU
bnsscmcl.y Y=BaseSetW
Assertion bnsscmcl UCBanWHWCBanYClsdJ

Proof

Step Hyp Ref Expression
1 bnsscmcl.x X=BaseSetU
2 bnsscmcl.d D=IndMetU
3 bnsscmcl.j J=MetOpenD
4 bnsscmcl.h H=SubSpU
5 bnsscmcl.y Y=BaseSetW
6 bnnv UCBanUNrmCVec
7 4 sspnv UNrmCVecWHWNrmCVec
8 6 7 sylan UCBanWHWNrmCVec
9 eqid IndMetW=IndMetW
10 5 9 iscbn WCBanWNrmCVecIndMetWCMetY
11 10 baib WNrmCVecWCBanIndMetWCMetY
12 8 11 syl UCBanWHWCBanIndMetWCMetY
13 5 2 9 4 sspims UNrmCVecWHIndMetW=DY×Y
14 6 13 sylan UCBanWHIndMetW=DY×Y
15 14 eleq1d UCBanWHIndMetWCMetYDY×YCMetY
16 1 2 cbncms UCBanDCMetX
17 16 adantr UCBanWHDCMetX
18 3 cmetss DCMetXDY×YCMetYYClsdJ
19 17 18 syl UCBanWHDY×YCMetYYClsdJ
20 12 15 19 3bitrd UCBanWHWCBanYClsdJ