Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnsscmcl.x | |
|
bnsscmcl.d | |
||
bnsscmcl.j | |
||
bnsscmcl.h | |
||
bnsscmcl.y | |
||
Assertion | bnsscmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnsscmcl.x | |
|
2 | bnsscmcl.d | |
|
3 | bnsscmcl.j | |
|
4 | bnsscmcl.h | |
|
5 | bnsscmcl.y | |
|
6 | bnnv | |
|
7 | 4 | sspnv | |
8 | 6 7 | sylan | |
9 | eqid | |
|
10 | 5 9 | iscbn | |
11 | 10 | baib | |
12 | 8 11 | syl | |
13 | 5 2 9 4 | sspims | |
14 | 6 13 | sylan | |
15 | 14 | eleq1d | |
16 | 1 2 | cbncms | |
17 | 16 | adantr | |
18 | 3 | cmetss | |
19 | 17 18 | syl | |
20 | 12 15 19 | 3bitrd | |