Metamath Proof Explorer


Theorem bnsscmcl

Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses bnsscmcl.x X = BaseSet U
bnsscmcl.d D = IndMet U
bnsscmcl.j J = MetOpen D
bnsscmcl.h H = SubSp U
bnsscmcl.y Y = BaseSet W
Assertion bnsscmcl U CBan W H W CBan Y Clsd J

Proof

Step Hyp Ref Expression
1 bnsscmcl.x X = BaseSet U
2 bnsscmcl.d D = IndMet U
3 bnsscmcl.j J = MetOpen D
4 bnsscmcl.h H = SubSp U
5 bnsscmcl.y Y = BaseSet W
6 bnnv U CBan U NrmCVec
7 4 sspnv U NrmCVec W H W NrmCVec
8 6 7 sylan U CBan W H W NrmCVec
9 eqid IndMet W = IndMet W
10 5 9 iscbn W CBan W NrmCVec IndMet W CMet Y
11 10 baib W NrmCVec W CBan IndMet W CMet Y
12 8 11 syl U CBan W H W CBan IndMet W CMet Y
13 5 2 9 4 sspims U NrmCVec W H IndMet W = D Y × Y
14 6 13 sylan U CBan W H IndMet W = D Y × Y
15 14 eleq1d U CBan W H IndMet W CMet Y D Y × Y CMet Y
16 1 2 cbncms U CBan D CMet X
17 16 adantr U CBan W H D CMet X
18 3 cmetss D CMet X D Y × Y CMet Y Y Clsd J
19 17 18 syl U CBan W H D Y × Y CMet Y Y Clsd J
20 12 15 19 3bitrd U CBan W H W CBan Y Clsd J