Metamath Proof Explorer


Theorem borelmbl

Description: All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of Fremlin1 p. 32. See also Definition 111G (d) of Fremlin1 p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses borelmbl.x φXFin
borelmbl.s S=domvolnX
borelmbl.b B=SalGenTopOpenmsup
Assertion borelmbl φBS

Proof

Step Hyp Ref Expression
1 borelmbl.x φXFin
2 borelmbl.s S=domvolnX
3 borelmbl.b B=SalGenTopOpenmsup
4 fvexd φTopOpenmsupV
5 1 2 dmovnsal φSSAlg
6 1 adantr φyTopOpenmsupXFin
7 simpr φyTopOpenmsupyTopOpenmsup
8 6 2 7 opnvonmbl φyTopOpenmsupyS
9 8 ssd φTopOpenmsupS
10 eqid domvolnX=domvolnX
11 1 10 unidmvon φdomvolnX=X
12 2 unieqi S=domvolnX
13 12 a1i φS=domvolnX
14 rrxunitopnfi XFinTopOpenmsup=X
15 1 14 syl φTopOpenmsup=X
16 11 13 15 3eqtr4d φS=TopOpenmsup
17 4 3 5 9 16 salgenss φBS