Metamath Proof Explorer


Theorem bpos1lem

Description: Lemma for bpos1 . (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses bpos1.1 pN<pp2 Nφ
bpos1.2 NPφ
bpos1.3 P
bpos1.4 A0
bpos1.5 A2=B
bpos1.6 A<P
bpos1.7 P<BP=B
Assertion bpos1lem NAφ

Proof

Step Hyp Ref Expression
1 bpos1.1 pN<pp2 Nφ
2 bpos1.2 NPφ
3 bpos1.3 P
4 bpos1.4 A0
5 bpos1.5 A2=B
6 bpos1.6 A<P
7 bpos1.7 P<BP=B
8 prmnn PP
9 3 8 ax-mp P
10 9 nnzi P
11 eluzelz NAN
12 eluz PNNPPN
13 10 11 12 sylancr NANPPN
14 13 2 syl6bir NAPNφ
15 9 nnrei P
16 15 a1i NAP
17 4 nn0rei A
18 2re 2
19 17 18 remulcli A2
20 5 19 eqeltrri B
21 20 a1i NAB
22 eluzelre NAN
23 remulcl 2N2 N
24 18 22 23 sylancr NA2 N
25 15 20 leloei PBP<BP=B
26 7 25 mpbir PB
27 26 a1i NAPB
28 4 nn0cni A
29 2cn 2
30 28 29 5 mulcomli 2A=B
31 eluzle NAAN
32 2pos 0<2
33 18 32 pm3.2i 20<2
34 lemul2 AN20<2AN2A2 N
35 17 33 34 mp3an13 NAN2A2 N
36 22 35 syl NAAN2A2 N
37 31 36 mpbid NA2A2 N
38 30 37 eqbrtrrid NAB2 N
39 16 21 24 27 38 letrd NAP2 N
40 39 anim2i N<PNAN<PP2 N
41 breq2 p=PN<pN<P
42 breq1 p=Pp2 NP2 N
43 41 42 anbi12d p=PN<pp2 NN<PP2 N
44 43 rspcev PN<PP2 NpN<pp2 N
45 3 40 44 sylancr N<PNApN<pp2 N
46 45 1 syl N<PNAφ
47 46 expcom NAN<Pφ
48 lelttric PNPNN<P
49 15 22 48 sylancr NAPNN<P
50 14 47 49 mpjaod NAφ