Metamath Proof Explorer


Theorem br8d

Description: Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013) (Revised by Mario Carneiro, 3-May-2015) (Revised by Thierry Arnoux, 21-Mar-2019)

Ref Expression
Hypotheses br8d.1 a=Aψχ
br8d.2 b=Bχθ
br8d.3 c=Cθτ
br8d.4 d=Dτη
br8d.5 e=Eηζ
br8d.6 f=Fζσ
br8d.7 g=Gσρ
br8d.8 h=Hρμ
br8d.10 φR=pq|aPbPcPdPePfPgPhPp=abcdq=efghψ
br8d.11 φAP
br8d.12 φBP
br8d.13 φCP
br8d.14 φDP
br8d.15 φEP
br8d.16 φFP
br8d.17 φGP
br8d.18 φHP
Assertion br8d φABCDREFGHμ

Proof

Step Hyp Ref Expression
1 br8d.1 a=Aψχ
2 br8d.2 b=Bχθ
3 br8d.3 c=Cθτ
4 br8d.4 d=Dτη
5 br8d.5 e=Eηζ
6 br8d.6 f=Fζσ
7 br8d.7 g=Gσρ
8 br8d.8 h=Hρμ
9 br8d.10 φR=pq|aPbPcPdPePfPgPhPp=abcdq=efghψ
10 br8d.11 φAP
11 br8d.12 φBP
12 br8d.13 φCP
13 br8d.14 φDP
14 br8d.15 φEP
15 br8d.16 φFP
16 br8d.17 φGP
17 br8d.18 φHP
18 9 breqd φABCDREFGHABCDpq|aPbPcPdPePfPgPhPp=abcdq=efghψEFGH
19 opex ABCDV
20 opex EFGHV
21 eqeq1 p=ABCDp=abcdABCD=abcd
22 21 3anbi1d p=ABCDp=abcdq=efghψABCD=abcdq=efghψ
23 22 rexbidv p=ABCDhPp=abcdq=efghψhPABCD=abcdq=efghψ
24 23 2rexbidv p=ABCDfPgPhPp=abcdq=efghψfPgPhPABCD=abcdq=efghψ
25 24 2rexbidv p=ABCDdPePfPgPhPp=abcdq=efghψdPePfPgPhPABCD=abcdq=efghψ
26 25 2rexbidv p=ABCDbPcPdPePfPgPhPp=abcdq=efghψbPcPdPePfPgPhPABCD=abcdq=efghψ
27 26 rexbidv p=ABCDaPbPcPdPePfPgPhPp=abcdq=efghψaPbPcPdPePfPgPhPABCD=abcdq=efghψ
28 eqeq1 q=EFGHq=efghEFGH=efgh
29 28 3anbi2d q=EFGHABCD=abcdq=efghψABCD=abcdEFGH=efghψ
30 29 rexbidv q=EFGHhPABCD=abcdq=efghψhPABCD=abcdEFGH=efghψ
31 30 2rexbidv q=EFGHfPgPhPABCD=abcdq=efghψfPgPhPABCD=abcdEFGH=efghψ
32 31 2rexbidv q=EFGHdPePfPgPhPABCD=abcdq=efghψdPePfPgPhPABCD=abcdEFGH=efghψ
33 32 2rexbidv q=EFGHbPcPdPePfPgPhPABCD=abcdq=efghψbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
34 33 rexbidv q=EFGHaPbPcPdPePfPgPhPABCD=abcdq=efghψaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
35 eqid pq|aPbPcPdPePfPgPhPp=abcdq=efghψ=pq|aPbPcPdPePfPgPhPp=abcdq=efghψ
36 19 20 27 34 35 brab ABCDpq|aPbPcPdPePfPgPhPp=abcdq=efghψEFGHaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
37 18 36 bitrdi φABCDREFGHaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
38 opex abV
39 opex cdV
40 38 39 opth abcd=ABCDab=ABcd=CD
41 vex aV
42 vex bV
43 41 42 opth ab=ABa=Ab=B
44 1 2 sylan9bb a=Ab=Bψθ
45 43 44 sylbi ab=ABψθ
46 vex cV
47 vex dV
48 46 47 opth cd=CDc=Cd=D
49 3 4 sylan9bb c=Cd=Dθη
50 48 49 sylbi cd=CDθη
51 45 50 sylan9bb ab=ABcd=CDψη
52 40 51 sylbi abcd=ABCDψη
53 52 eqcoms ABCD=abcdψη
54 opex efV
55 opex ghV
56 54 55 opth efgh=EFGHef=EFgh=GH
57 vex eV
58 vex fV
59 57 58 opth ef=EFe=Ef=F
60 5 6 sylan9bb e=Ef=Fησ
61 59 60 sylbi ef=EFησ
62 vex gV
63 vex hV
64 62 63 opth gh=GHg=Gh=H
65 7 8 sylan9bb g=Gh=Hσμ
66 64 65 sylbi gh=GHσμ
67 61 66 sylan9bb ef=EFgh=GHημ
68 56 67 sylbi efgh=EFGHημ
69 68 eqcoms EFGH=efghημ
70 53 69 sylan9bb ABCD=abcdEFGH=efghψμ
71 70 biimp3a ABCD=abcdEFGH=efghψμ
72 71 a1i APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
73 72 rexlimdva APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
74 73 rexlimdvva APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
75 74 rexlimdvva APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
76 75 rexlimdvva APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
77 76 rexlimdva APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
78 simpl1l APBPCPDPEPFPGPHPμAP
79 simpl1r APBPCPDPEPFPGPHPμBP
80 simpl21 APBPCPDPEPFPGPHPμCP
81 simpl22 APBPCPDPEPFPGPHPμDP
82 simpl23 APBPCPDPEPFPGPHPμEP
83 simpl31 APBPCPDPEPFPGPHPμFP
84 simpl32 APBPCPDPEPFPGPHPμGP
85 simpl33 APBPCPDPEPFPGPHPμHP
86 eqidd APBPCPDPEPFPGPHPμABCD=ABCD
87 eqidd APBPCPDPEPFPGPHPμEFGH=EFGH
88 simpr APBPCPDPEPFPGPHPμμ
89 opeq1 g=Ggh=Gh
90 89 opeq2d g=GEFgh=EFGh
91 90 eqeq2d g=GEFGH=EFghEFGH=EFGh
92 91 7 3anbi23d g=GABCD=ABCDEFGH=EFghσABCD=ABCDEFGH=EFGhρ
93 opeq2 h=HGh=GH
94 93 opeq2d h=HEFGh=EFGH
95 94 eqeq2d h=HEFGH=EFGhEFGH=EFGH
96 95 8 3anbi23d h=HABCD=ABCDEFGH=EFGhρABCD=ABCDEFGH=EFGHμ
97 92 96 rspc2ev GPHPABCD=ABCDEFGH=EFGHμgPhPABCD=ABCDEFGH=EFghσ
98 84 85 86 87 88 97 syl113anc APBPCPDPEPFPGPHPμgPhPABCD=ABCDEFGH=EFghσ
99 opeq2 d=DCd=CD
100 99 opeq2d d=DABCd=ABCD
101 100 eqeq2d d=DABCD=ABCdABCD=ABCD
102 101 4 3anbi13d d=DABCD=ABCdEFGH=efghτABCD=ABCDEFGH=efghη
103 102 2rexbidv d=DgPhPABCD=ABCdEFGH=efghτgPhPABCD=ABCDEFGH=efghη
104 opeq1 e=Eef=Ef
105 104 opeq1d e=Eefgh=Efgh
106 105 eqeq2d e=EEFGH=efghEFGH=Efgh
107 106 5 3anbi23d e=EABCD=ABCDEFGH=efghηABCD=ABCDEFGH=Efghζ
108 107 2rexbidv e=EgPhPABCD=ABCDEFGH=efghηgPhPABCD=ABCDEFGH=Efghζ
109 opeq2 f=FEf=EF
110 109 opeq1d f=FEfgh=EFgh
111 110 eqeq2d f=FEFGH=EfghEFGH=EFgh
112 111 6 3anbi23d f=FABCD=ABCDEFGH=EfghζABCD=ABCDEFGH=EFghσ
113 112 2rexbidv f=FgPhPABCD=ABCDEFGH=EfghζgPhPABCD=ABCDEFGH=EFghσ
114 103 108 113 rspc3ev DPEPFPgPhPABCD=ABCDEFGH=EFghσdPePfPgPhPABCD=ABCdEFGH=efghτ
115 81 82 83 98 114 syl31anc APBPCPDPEPFPGPHPμdPePfPgPhPABCD=ABCdEFGH=efghτ
116 opeq1 a=Aab=Ab
117 116 opeq1d a=Aabcd=Abcd
118 117 eqeq2d a=AABCD=abcdABCD=Abcd
119 118 1 3anbi13d a=AABCD=abcdEFGH=efghψABCD=AbcdEFGH=efghχ
120 119 rexbidv a=AhPABCD=abcdEFGH=efghψhPABCD=AbcdEFGH=efghχ
121 120 2rexbidv a=AfPgPhPABCD=abcdEFGH=efghψfPgPhPABCD=AbcdEFGH=efghχ
122 121 2rexbidv a=AdPePfPgPhPABCD=abcdEFGH=efghψdPePfPgPhPABCD=AbcdEFGH=efghχ
123 opeq2 b=BAb=AB
124 123 opeq1d b=BAbcd=ABcd
125 124 eqeq2d b=BABCD=AbcdABCD=ABcd
126 125 2 3anbi13d b=BABCD=AbcdEFGH=efghχABCD=ABcdEFGH=efghθ
127 126 rexbidv b=BhPABCD=AbcdEFGH=efghχhPABCD=ABcdEFGH=efghθ
128 127 2rexbidv b=BfPgPhPABCD=AbcdEFGH=efghχfPgPhPABCD=ABcdEFGH=efghθ
129 128 2rexbidv b=BdPePfPgPhPABCD=AbcdEFGH=efghχdPePfPgPhPABCD=ABcdEFGH=efghθ
130 opeq1 c=Ccd=Cd
131 130 opeq2d c=CABcd=ABCd
132 131 eqeq2d c=CABCD=ABcdABCD=ABCd
133 132 3 3anbi13d c=CABCD=ABcdEFGH=efghθABCD=ABCdEFGH=efghτ
134 133 rexbidv c=ChPABCD=ABcdEFGH=efghθhPABCD=ABCdEFGH=efghτ
135 134 2rexbidv c=CfPgPhPABCD=ABcdEFGH=efghθfPgPhPABCD=ABCdEFGH=efghτ
136 135 2rexbidv c=CdPePfPgPhPABCD=ABcdEFGH=efghθdPePfPgPhPABCD=ABCdEFGH=efghτ
137 122 129 136 rspc3ev APBPCPdPePfPgPhPABCD=ABCdEFGH=efghτaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
138 78 79 80 115 137 syl31anc APBPCPDPEPFPGPHPμaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
139 138 ex APBPCPDPEPFPGPHPμaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψ
140 77 139 impbid APBPCPDPEPFPGPHPaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
141 10 11 12 13 14 15 16 17 140 syl233anc φaPbPcPdPePfPgPhPABCD=abcdEFGH=efghψμ
142 37 141 bitrd φABCDREFGHμ