Metamath Proof Explorer


Theorem bralnfn

Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion bralnfn AbraALinFn

Proof

Step Hyp Ref Expression
1 brafn AbraA:
2 simpll AxyzA
3 hvmulcl xyxy
4 3 ad2ant2lr Axyzxy
5 simprr Axyzz
6 braadd AxyzbraAxy+z=braAxy+braAz
7 2 4 5 6 syl3anc AxyzbraAxy+z=braAxy+braAz
8 bramul AxybraAxy=xbraAy
9 8 3expa AxybraAxy=xbraAy
10 9 adantrr AxyzbraAxy=xbraAy
11 10 oveq1d AxyzbraAxy+braAz=xbraAy+braAz
12 7 11 eqtrd AxyzbraAxy+z=xbraAy+braAz
13 12 ralrimivva AxyzbraAxy+z=xbraAy+braAz
14 13 ralrimiva AxyzbraAxy+z=xbraAy+braAz
15 ellnfn braALinFnbraA:xyzbraAxy+z=xbraAy+braAz
16 1 14 15 sylanbrc AbraALinFn