Metamath Proof Explorer


Theorem brcgr3

Description: Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F A B Cgr D E A C Cgr D F B C Cgr E F

Proof

Step Hyp Ref Expression
1 opeq1 a = A a b = A b
2 1 breq1d a = A a b Cgr d e A b Cgr d e
3 opeq1 a = A a c = A c
4 3 breq1d a = A a c Cgr d f A c Cgr d f
5 2 4 3anbi12d a = A a b Cgr d e a c Cgr d f b c Cgr e f A b Cgr d e A c Cgr d f b c Cgr e f
6 opeq2 b = B A b = A B
7 6 breq1d b = B A b Cgr d e A B Cgr d e
8 opeq1 b = B b c = B c
9 8 breq1d b = B b c Cgr e f B c Cgr e f
10 7 9 3anbi13d b = B A b Cgr d e A c Cgr d f b c Cgr e f A B Cgr d e A c Cgr d f B c Cgr e f
11 opeq2 c = C A c = A C
12 11 breq1d c = C A c Cgr d f A C Cgr d f
13 opeq2 c = C B c = B C
14 13 breq1d c = C B c Cgr e f B C Cgr e f
15 12 14 3anbi23d c = C A B Cgr d e A c Cgr d f B c Cgr e f A B Cgr d e A C Cgr d f B C Cgr e f
16 opeq1 d = D d e = D e
17 16 breq2d d = D A B Cgr d e A B Cgr D e
18 opeq1 d = D d f = D f
19 18 breq2d d = D A C Cgr d f A C Cgr D f
20 17 19 3anbi12d d = D A B Cgr d e A C Cgr d f B C Cgr e f A B Cgr D e A C Cgr D f B C Cgr e f
21 opeq2 e = E D e = D E
22 21 breq2d e = E A B Cgr D e A B Cgr D E
23 opeq1 e = E e f = E f
24 23 breq2d e = E B C Cgr e f B C Cgr E f
25 22 24 3anbi13d e = E A B Cgr D e A C Cgr D f B C Cgr e f A B Cgr D E A C Cgr D f B C Cgr E f
26 opeq2 f = F D f = D F
27 26 breq2d f = F A C Cgr D f A C Cgr D F
28 opeq2 f = F E f = E F
29 28 breq2d f = F B C Cgr E f B C Cgr E F
30 27 29 3anbi23d f = F A B Cgr D E A C Cgr D f B C Cgr E f A B Cgr D E A C Cgr D F B C Cgr E F
31 fveq2 n = N 𝔼 n = 𝔼 N
32 df-cgr3 Cgr3 = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n p = a b c q = d e f a b Cgr d e a c Cgr d f b c Cgr e f
33 5 10 15 20 25 30 31 32 br6 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F A B Cgr D E A C Cgr D F B C Cgr E F