Metamath Proof Explorer


Theorem brcnvtrclfv

Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brcnvtrclfv RUAVBWAt+R-1BrRrrrrBrA

Proof

Step Hyp Ref Expression
1 brcnvg AVBWAt+R-1BBt+RA
2 1 3adant1 RUAVBWAt+R-1BBt+RA
3 brtrclfv RUBt+RArRrrrrBrA
4 3 3ad2ant1 RUAVBWBt+RArRrrrrBrA
5 2 4 bitrd RUAVBWAt+R-1BrRrrrrBrA