Metamath Proof Explorer


Theorem brfinext

Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion brfinext E /FldExt F E /FinExt F E .:. F 0

Proof

Step Hyp Ref Expression
1 fldextfld1 E /FldExt F E Field
2 fldextfld2 E /FldExt F F Field
3 breq12 e = E f = F e /FldExt f E /FldExt F
4 oveq12 e = E f = F e .:. f = E .:. F
5 4 eleq1d e = E f = F e .:. f 0 E .:. F 0
6 3 5 anbi12d e = E f = F e /FldExt f e .:. f 0 E /FldExt F E .:. F 0
7 df-finext /FinExt = e f | e /FldExt f e .:. f 0
8 6 7 brabga E Field F Field E /FinExt F E /FldExt F E .:. F 0
9 1 2 8 syl2anc E /FldExt F E /FinExt F E /FldExt F E .:. F 0
10 9 bianabs E /FldExt F E /FinExt F E .:. F 0