Metamath Proof Explorer


Theorem brssc

Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion brssc HcatJtJFnt×ts𝒫tHxs×s𝒫Jx

Proof

Step Hyp Ref Expression
1 sscrel Relcat
2 1 brrelex12i HcatJHVJV
3 vex tV
4 3 3 xpex t×tV
5 fnex JFnt×tt×tVJV
6 4 5 mpan2 JFnt×tJV
7 elex Hxs×s𝒫JxHV
8 7 rexlimivw s𝒫tHxs×s𝒫JxHV
9 6 8 anim12ci JFnt×ts𝒫tHxs×s𝒫JxHVJV
10 9 exlimiv tJFnt×ts𝒫tHxs×s𝒫JxHVJV
11 simpr h=Hj=Jj=J
12 11 fneq1d h=Hj=JjFnt×tJFnt×t
13 simpl h=Hj=Jh=H
14 11 fveq1d h=Hj=Jjx=Jx
15 14 pweqd h=Hj=J𝒫jx=𝒫Jx
16 15 ixpeq2dv h=Hj=Jxs×s𝒫jx=xs×s𝒫Jx
17 13 16 eleq12d h=Hj=Jhxs×s𝒫jxHxs×s𝒫Jx
18 17 rexbidv h=Hj=Js𝒫thxs×s𝒫jxs𝒫tHxs×s𝒫Jx
19 12 18 anbi12d h=Hj=JjFnt×ts𝒫thxs×s𝒫jxJFnt×ts𝒫tHxs×s𝒫Jx
20 19 exbidv h=Hj=JtjFnt×ts𝒫thxs×s𝒫jxtJFnt×ts𝒫tHxs×s𝒫Jx
21 df-ssc cat=hj|tjFnt×ts𝒫thxs×s𝒫jx
22 20 21 brabga HVJVHcatJtJFnt×ts𝒫tHxs×s𝒫Jx
23 2 10 22 pm5.21nii HcatJtJFnt×ts𝒫tHxs×s𝒫Jx