Metamath Proof Explorer


Theorem brtrclfv

Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion brtrclfv RVAt+RBrRrrrrArB

Proof

Step Hyp Ref Expression
1 trclfv RVt+R=r|Rrrrr
2 1 breqd RVAt+RBAr|RrrrrB
3 brintclab Ar|RrrrrBrRrrrrABr
4 df-br ArBABr
5 4 imbi2i RrrrrArBRrrrrABr
6 5 albii rRrrrrArBrRrrrrABr
7 3 6 bitr4i Ar|RrrrrBrRrrrrArB
8 2 7 bitrdi RVAt+RBrRrrrrArB