Metamath Proof Explorer


Theorem brub

Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Hypotheses brub.1 S V
brub.2 A V
Assertion brub S UB R A x S x R A

Proof

Step Hyp Ref Expression
1 brub.1 S V
2 brub.2 A V
3 brxp S V × V A S V A V
4 1 2 3 mpbir2an S V × V A
5 brdif S V × V V R E -1 A S V × V A ¬ S V R E -1 A
6 4 5 mpbiran S V × V V R E -1 A ¬ S V R E -1 A
7 1 2 coepr S V R E -1 A x S x V R A
8 6 7 xchbinx S V × V V R E -1 A ¬ x S x V R A
9 df-ub UB R = V × V V R E -1
10 9 breqi S UB R A S V × V V R E -1 A
11 brv x V A
12 brdif x V R A x V A ¬ x R A
13 11 12 mpbiran x V R A ¬ x R A
14 13 rexbii x S x V R A x S ¬ x R A
15 rexnal x S ¬ x R A ¬ x S x R A
16 14 15 bitri x S x V R A ¬ x S x R A
17 16 con2bii x S x R A ¬ x S x V R A
18 8 10 17 3bitr4i S UB R A x S x R A