Metamath Proof Explorer


Theorem brub

Description: Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018)

Ref Expression
Hypotheses brub.1 SV
brub.2 AV
Assertion brub SUBRAxSxRA

Proof

Step Hyp Ref Expression
1 brub.1 SV
2 brub.2 AV
3 brxp SV×VASVAV
4 1 2 3 mpbir2an SV×VA
5 brdif SV×VVRE-1ASV×VA¬SVRE-1A
6 4 5 mpbiran SV×VVRE-1A¬SVRE-1A
7 1 2 coepr SVRE-1AxSxVRA
8 6 7 xchbinx SV×VVRE-1A¬xSxVRA
9 df-ub UBR=V×VVRE-1
10 9 breqi SUBRASV×VVRE-1A
11 brv xVA
12 brdif xVRAxVA¬xRA
13 11 12 mpbiran xVRA¬xRA
14 13 rexbii xSxVRAxS¬xRA
15 rexnal xS¬xRA¬xSxRA
16 14 15 bitri xSxVRA¬xSxRA
17 16 con2bii xSxRA¬xSxVRA
18 8 10 17 3bitr4i SUBRAxSxRA