Metamath Proof Explorer


Theorem brxrn

Description: Characterize a ternary relation over a range Cartesian product. Together with xrnss3v , this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021)

Ref Expression
Assertion brxrn A V B W C X A R S B C A R B A S C

Proof

Step Hyp Ref Expression
1 df-xrn R S = 1 st V × V -1 R 2 nd V × V -1 S
2 1 breqi A R S B C A 1 st V × V -1 R 2 nd V × V -1 S B C
3 2 a1i A V B W C X A R S B C A 1 st V × V -1 R 2 nd V × V -1 S B C
4 brin A 1 st V × V -1 R 2 nd V × V -1 S B C A 1 st V × V -1 R B C A 2 nd V × V -1 S B C
5 4 a1i A V B W C X A 1 st V × V -1 R 2 nd V × V -1 S B C A 1 st V × V -1 R B C A 2 nd V × V -1 S B C
6 opex B C V
7 brcog A V B C V A 1 st V × V -1 R B C x A R x x 1 st V × V -1 B C
8 6 7 mpan2 A V A 1 st V × V -1 R B C x A R x x 1 st V × V -1 B C
9 8 3ad2ant1 A V B W C X A 1 st V × V -1 R B C x A R x x 1 st V × V -1 B C
10 brcnvg x V B C V x 1 st V × V -1 B C B C 1 st V × V x
11 6 10 mpan2 x V x 1 st V × V -1 B C B C 1 st V × V x
12 11 elv x 1 st V × V -1 B C B C 1 st V × V x
13 brres x V B C 1 st V × V x B C V × V B C 1 st x
14 13 elv B C 1 st V × V x B C V × V B C 1 st x
15 opelvvg B W C X B C V × V
16 15 biantrurd B W C X B C 1 st x B C V × V B C 1 st x
17 14 16 bitr4id B W C X B C 1 st V × V x B C 1 st x
18 br1steqg B W C X B C 1 st x x = B
19 17 18 bitrd B W C X B C 1 st V × V x x = B
20 19 3adant1 A V B W C X B C 1 st V × V x x = B
21 12 20 syl5bb A V B W C X x 1 st V × V -1 B C x = B
22 21 anbi1cd A V B W C X A R x x 1 st V × V -1 B C x = B A R x
23 22 exbidv A V B W C X x A R x x 1 st V × V -1 B C x x = B A R x
24 breq2 x = B A R x A R B
25 24 ceqsexgv B W x x = B A R x A R B
26 25 3ad2ant2 A V B W C X x x = B A R x A R B
27 9 23 26 3bitrd A V B W C X A 1 st V × V -1 R B C A R B
28 brcog A V B C V A 2 nd V × V -1 S B C y A S y y 2 nd V × V -1 B C
29 6 28 mpan2 A V A 2 nd V × V -1 S B C y A S y y 2 nd V × V -1 B C
30 29 3ad2ant1 A V B W C X A 2 nd V × V -1 S B C y A S y y 2 nd V × V -1 B C
31 brcnvg y V B C V y 2 nd V × V -1 B C B C 2 nd V × V y
32 6 31 mpan2 y V y 2 nd V × V -1 B C B C 2 nd V × V y
33 32 elv y 2 nd V × V -1 B C B C 2 nd V × V y
34 brres y V B C 2 nd V × V y B C V × V B C 2 nd y
35 34 elv B C 2 nd V × V y B C V × V B C 2 nd y
36 15 biantrurd B W C X B C 2 nd y B C V × V B C 2 nd y
37 35 36 bitr4id B W C X B C 2 nd V × V y B C 2 nd y
38 br2ndeqg B W C X B C 2 nd y y = C
39 37 38 bitrd B W C X B C 2 nd V × V y y = C
40 39 3adant1 A V B W C X B C 2 nd V × V y y = C
41 33 40 syl5bb A V B W C X y 2 nd V × V -1 B C y = C
42 41 anbi1cd A V B W C X A S y y 2 nd V × V -1 B C y = C A S y
43 42 exbidv A V B W C X y A S y y 2 nd V × V -1 B C y y = C A S y
44 breq2 y = C A S y A S C
45 44 ceqsexgv C X y y = C A S y A S C
46 45 3ad2ant3 A V B W C X y y = C A S y A S C
47 30 43 46 3bitrd A V B W C X A 2 nd V × V -1 S B C A S C
48 27 47 anbi12d A V B W C X A 1 st V × V -1 R B C A 2 nd V × V -1 S B C A R B A S C
49 3 5 48 3bitrd A V B W C X A R S B C A R B A S C