Metamath Proof Explorer


Theorem btwnouttr

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Scott Fenton, 14-Jun-2013)

Ref Expression
Assertion btwnouttr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D B Btwn A D

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
2 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
3 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
4 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
5 necom B C C B
6 5 a1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C C B
7 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
8 btwncom N B 𝔼 N A 𝔼 N C 𝔼 N B Btwn A C B Btwn C A
9 1 2 4 7 8 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C B Btwn C A
10 btwncom N C 𝔼 N B 𝔼 N D 𝔼 N C Btwn B D C Btwn D B
11 1 7 2 3 10 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn B D C Btwn D B
12 6 9 11 3anbi123d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C B B Btwn C A C Btwn D B
13 3ancomb C B B Btwn C A C Btwn D B C B C Btwn D B B Btwn C A
14 12 13 syl6bb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C B C Btwn D B B Btwn C A
15 14 biimpa N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C B C Btwn D B B Btwn C A
16 btwnouttr2 N D 𝔼 N C 𝔼 N B 𝔼 N A 𝔼 N C B C Btwn D B B Btwn C A B Btwn D A
17 1 3 7 2 4 16 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C B C Btwn D B B Btwn C A B Btwn D A
18 17 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C B C Btwn D B B Btwn C A B Btwn D A
19 15 18 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D B Btwn D A
20 1 2 3 4 19 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D B Btwn A D
21 20 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D B Btwn A D