Metamath Proof Explorer


Theorem btwnzge0

Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of Gleason p. 217. (For the first half see rebtwnz .) (Contributed by NM, 12-Mar-2005)

Ref Expression
Assertion btwnzge0 ANNAA<N+10A0N

Proof

Step Hyp Ref Expression
1 0z 0
2 flge A00A0A
3 1 2 mpan2 A0A0A
4 3 ad2antrr ANNAA<N+10A0A
5 flbi ANA=NNAA<N+1
6 5 biimpar ANNAA<N+1A=N
7 6 breq2d ANNAA<N+10A0N
8 4 7 bitrd ANNAA<N+10A0N