Metamath Proof Explorer


Theorem cantnfval

Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfcl.g G = OrdIso E F supp
cantnfcl.f φ F S
cantnfval.h H = seq ω k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
Assertion cantnfval φ A CNF B F = H dom G

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfcl.g G = OrdIso E F supp
5 cantnfcl.f φ F S
6 cantnfval.h H = seq ω k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
7 eqid g A B | finSupp g = g A B | finSupp g
8 7 2 3 cantnffval φ A CNF B = f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
9 8 fveq1d φ A CNF B F = f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h F
10 7 2 3 cantnfdm φ dom A CNF B = g A B | finSupp g
11 1 10 syl5eq φ S = g A B | finSupp g
12 5 11 eleqtrd φ F g A B | finSupp g
13 ovex f supp V
14 eqid OrdIso E f supp = OrdIso E f supp
15 14 oiexg f supp V OrdIso E f supp V
16 13 15 mp1i f = F OrdIso E f supp V
17 simpr f = F h = OrdIso E f supp h = OrdIso E f supp
18 oveq1 f = F f supp = F supp
19 18 adantr f = F h = OrdIso E f supp f supp = F supp
20 oieq2 f supp = F supp OrdIso E f supp = OrdIso E F supp
21 19 20 syl f = F h = OrdIso E f supp OrdIso E f supp = OrdIso E F supp
22 17 21 eqtrd f = F h = OrdIso E f supp h = OrdIso E F supp
23 22 4 eqtr4di f = F h = OrdIso E f supp h = G
24 23 fveq1d f = F h = OrdIso E f supp h k = G k
25 24 oveq2d f = F h = OrdIso E f supp A 𝑜 h k = A 𝑜 G k
26 simpl f = F h = OrdIso E f supp f = F
27 26 24 fveq12d f = F h = OrdIso E f supp f h k = F G k
28 25 27 oveq12d f = F h = OrdIso E f supp A 𝑜 h k 𝑜 f h k = A 𝑜 G k 𝑜 F G k
29 28 oveq1d f = F h = OrdIso E f supp A 𝑜 h k 𝑜 f h k + 𝑜 z = A 𝑜 G k 𝑜 F G k + 𝑜 z
30 29 mpoeq3dv f = F h = OrdIso E f supp k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z = k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
31 eqid =
32 seqomeq12 k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z = k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z = seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z = seq ω k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
33 30 31 32 sylancl f = F h = OrdIso E f supp seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z = seq ω k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
34 33 6 eqtr4di f = F h = OrdIso E f supp seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z = H
35 23 dmeqd f = F h = OrdIso E f supp dom h = dom G
36 34 35 fveq12d f = F h = OrdIso E f supp seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h = H dom G
37 16 36 csbied f = F OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h = H dom G
38 eqid f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h = f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
39 fvex H dom G V
40 37 38 39 fvmpt F g A B | finSupp g f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h F = H dom G
41 12 40 syl φ f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h F = H dom G
42 9 41 eqtrd φ A CNF B F = H dom G