Metamath Proof Explorer


Theorem caofdir

Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses caofdi.1 φAV
caofdi.2 φF:AK
caofdi.3 φG:AS
caofdi.4 φH:AS
caofdir.5 φxSySzKxRyTz=xTzOyTz
Assertion caofdir φGRfHTfF=GTfFOfHTfF

Proof

Step Hyp Ref Expression
1 caofdi.1 φAV
2 caofdi.2 φF:AK
3 caofdi.3 φG:AS
4 caofdi.4 φH:AS
5 caofdir.5 φxSySzKxRyTz=xTzOyTz
6 5 adantlr φwAxSySzKxRyTz=xTzOyTz
7 3 ffvelcdmda φwAGwS
8 4 ffvelcdmda φwAHwS
9 2 ffvelcdmda φwAFwK
10 6 7 8 9 caovdird φwAGwRHwTFw=GwTFwOHwTFw
11 10 mpteq2dva φwAGwRHwTFw=wAGwTFwOHwTFw
12 ovexd φwAGwRHwV
13 3 feqmptd φG=wAGw
14 4 feqmptd φH=wAHw
15 1 7 8 13 14 offval2 φGRfH=wAGwRHw
16 2 feqmptd φF=wAFw
17 1 12 9 15 16 offval2 φGRfHTfF=wAGwRHwTFw
18 ovexd φwAGwTFwV
19 ovexd φwAHwTFwV
20 1 7 9 13 16 offval2 φGTfF=wAGwTFw
21 1 8 9 14 16 offval2 φHTfF=wAHwTFw
22 1 18 19 20 21 offval2 φGTfFOfHTfF=wAGwTFwOHwTFw
23 11 17 22 3eqtr4d φGRfHTfF=GTfFOfHTfF