Metamath Proof Explorer


Theorem caragenel2d

Description: Membership in the Caratheodory's construction. Similar to carageneld , but here "less then or equal to" is used, instead of equality. This is Remark 113D of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragenel2d.o φ O OutMeas
caragenel2d.x X = dom O
caragenel2d.s S = CaraGen O
caragenel2d.e φ E 𝒫 X
caragenel2d.a φ a 𝒫 X O a E + 𝑒 O a E O a
Assertion caragenel2d φ E S

Proof

Step Hyp Ref Expression
1 caragenel2d.o φ O OutMeas
2 caragenel2d.x X = dom O
3 caragenel2d.s S = CaraGen O
4 caragenel2d.e φ E 𝒫 X
5 caragenel2d.a φ a 𝒫 X O a E + 𝑒 O a E O a
6 1 adantr φ a 𝒫 X O OutMeas
7 inss1 a E a
8 elpwi a 𝒫 X a X
9 7 8 sstrid a 𝒫 X a E X
10 9 adantl φ a 𝒫 X a E X
11 6 2 10 omexrcl φ a 𝒫 X O a E *
12 8 ssdifssd a 𝒫 X a E X
13 12 adantl φ a 𝒫 X a E X
14 6 2 13 omexrcl φ a 𝒫 X O a E *
15 xaddcl O a E * O a E * O a E + 𝑒 O a E *
16 11 14 15 syl2anc φ a 𝒫 X O a E + 𝑒 O a E *
17 8 adantl φ a 𝒫 X a X
18 6 2 17 omexrcl φ a 𝒫 X O a *
19 6 2 17 omelesplit φ a 𝒫 X O a O a E + 𝑒 O a E
20 16 18 5 19 xrletrid φ a 𝒫 X O a E + 𝑒 O a E = O a
21 1 2 3 4 20 carageneld φ E S