Metamath Proof Explorer


Theorem caragenelss

Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenelss.o φOOutMeas
caragenelss.s S=CaraGenO
caragenelss.a φAS
caragenelss.x X=domO
Assertion caragenelss φAX

Proof

Step Hyp Ref Expression
1 caragenelss.o φOOutMeas
2 caragenelss.s S=CaraGenO
3 caragenelss.a φAS
4 caragenelss.x X=domO
5 1 2 caragenel φASA𝒫domOx𝒫domOOxA+𝑒OxA=Ox
6 3 5 mpbid φA𝒫domOx𝒫domOOxA+𝑒OxA=Ox
7 6 simpld φA𝒫domO
8 4 eqcomi domO=X
9 8 pweqi 𝒫domO=𝒫X
10 9 a1i φ𝒫domO=𝒫X
11 7 10 eleqtrd φA𝒫X
12 elpwg ASA𝒫XAX
13 3 12 syl φA𝒫XAX
14 11 13 mpbid φAX