Metamath Proof Explorer


Theorem cbvixpdavw2

Description: Change bound variable and domain in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvixpdavw2.1 φ x = y C = D
cbvixpdavw2.2 φ x = y A = B
Assertion cbvixpdavw2 φ x A C = y B D

Proof

Step Hyp Ref Expression
1 cbvixpdavw2.1 φ x = y C = D
2 cbvixpdavw2.2 φ x = y A = B
3 simpr φ x = y x = y
4 3 2 eleq12d φ x = y x A y B
5 4 cbvabdavw φ x | x A = y | y B
6 5 fneq2d φ t Fn x | x A t Fn y | y B
7 fveq2 x = y t x = t y
8 7 adantl φ x = y t x = t y
9 8 1 eleq12d φ x = y t x C t y D
10 9 2 cbvraldva2 φ x A t x C y B t y D
11 6 10 anbi12d φ t Fn x | x A x A t x C t Fn y | y B y B t y D
12 11 abbidv φ t | t Fn x | x A x A t x C = t | t Fn y | y B y B t y D
13 df-ixp x A C = t | t Fn x | x A x A t x C
14 df-ixp y B D = t | t Fn y | y B y B t y D
15 12 13 14 3eqtr4g φ x A C = y B D