Metamath Proof Explorer


Theorem cbvsumdavw2

Description: Change bound variable and the set of integers in a sum. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvsumdavw2.1 φ A = B
cbvsumdavw2.2 φ j = k C = D
Assertion cbvsumdavw2 φ j A C = k B D

Proof

Step Hyp Ref Expression
1 cbvsumdavw2.1 φ A = B
2 cbvsumdavw2.2 φ j = k C = D
3 1 sseq1d φ A m B m
4 1 eleq2d φ n A n B
5 2 cbvcsbdavw φ n / j C = n / k D
6 4 5 ifbieq1d φ if n A n / j C 0 = if n B n / k D 0
7 6 mpteq2dv φ n if n A n / j C 0 = n if n B n / k D 0
8 7 seqeq3d φ seq m + n if n A n / j C 0 = seq m + n if n B n / k D 0
9 8 breq1d φ seq m + n if n A n / j C 0 x seq m + n if n B n / k D 0 x
10 3 9 anbi12d φ A m seq m + n if n A n / j C 0 x B m seq m + n if n B n / k D 0 x
11 10 rexbidv φ m A m seq m + n if n A n / j C 0 x m B m seq m + n if n B n / k D 0 x
12 1 f1oeq3d φ f : 1 m 1-1 onto A f : 1 m 1-1 onto B
13 2 cbvcsbdavw φ f n / j C = f n / k D
14 13 mpteq2dv φ n f n / j C = n f n / k D
15 14 seqeq3d φ seq 1 + n f n / j C = seq 1 + n f n / k D
16 15 fveq1d φ seq 1 + n f n / j C m = seq 1 + n f n / k D m
17 16 eqeq2d φ x = seq 1 + n f n / j C m x = seq 1 + n f n / k D m
18 12 17 anbi12d φ f : 1 m 1-1 onto A x = seq 1 + n f n / j C m f : 1 m 1-1 onto B x = seq 1 + n f n / k D m
19 18 exbidv φ f f : 1 m 1-1 onto A x = seq 1 + n f n / j C m f f : 1 m 1-1 onto B x = seq 1 + n f n / k D m
20 19 rexbidv φ m f f : 1 m 1-1 onto A x = seq 1 + n f n / j C m m f f : 1 m 1-1 onto B x = seq 1 + n f n / k D m
21 11 20 orbi12d φ m A m seq m + n if n A n / j C 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / j C m m B m seq m + n if n B n / k D 0 x m f f : 1 m 1-1 onto B x = seq 1 + n f n / k D m
22 21 iotabidv φ ι x | m A m seq m + n if n A n / j C 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / j C m = ι x | m B m seq m + n if n B n / k D 0 x m f f : 1 m 1-1 onto B x = seq 1 + n f n / k D m
23 df-sum j A C = ι x | m A m seq m + n if n A n / j C 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / j C m
24 df-sum k B D = ι x | m B m seq m + n if n B n / k D 0 x m f f : 1 m 1-1 onto B x = seq 1 + n f n / k D m
25 22 23 24 3eqtr4g φ j A C = k B D