Metamath Proof Explorer


Theorem cbvmptdavw2

Description: Change bound variable and domain in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmptdavw2.1 φ x = y C = D
cbvmptdavw2.2 φ x = y A = B
Assertion cbvmptdavw2 φ x A C = y B D

Proof

Step Hyp Ref Expression
1 cbvmptdavw2.1 φ x = y C = D
2 cbvmptdavw2.2 φ x = y A = B
3 eleq1w x = y x A y A
4 3 adantl φ x = y x A y A
5 2 eleq2d φ x = y y A y B
6 4 5 bitrd φ x = y x A y B
7 1 eqeq2d φ x = y t = C t = D
8 6 7 anbi12d φ x = y x A t = C y B t = D
9 8 cbvopab1davw φ x t | x A t = C = y t | y B t = D
10 df-mpt x A C = x t | x A t = C
11 df-mpt y B D = y t | y B t = D
12 9 10 11 3eqtr4g φ x A C = y B D