Metamath Proof Explorer


Theorem cbvprod

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses cbvprod.1 j=kB=C
cbvprod.2 _kA
cbvprod.3 _jA
cbvprod.4 _kB
cbvprod.5 _jC
Assertion cbvprod jAB=kAC

Proof

Step Hyp Ref Expression
1 cbvprod.1 j=kB=C
2 cbvprod.2 _kA
3 cbvprod.3 _jA
4 cbvprod.4 _kB
5 cbvprod.5 _jC
6 biid AmAm
7 2 nfcri kjA
8 nfcv _k1
9 7 4 8 nfif _kifjAB1
10 3 nfcri jkA
11 nfcv _j1
12 10 5 11 nfif _jifkAC1
13 eleq1w j=kjAkA
14 13 1 ifbieq1d j=kifjAB1=ifkAC1
15 9 12 14 cbvmpt jifjAB1=kifkAC1
16 seqeq3 jifjAB1=kifkAC1seqn×jifjAB1=seqn×kifkAC1
17 15 16 ax-mp seqn×jifjAB1=seqn×kifkAC1
18 17 breq1i seqn×jifjAB1yseqn×kifkAC1y
19 18 anbi2i y0seqn×jifjAB1yy0seqn×kifkAC1y
20 19 exbii yy0seqn×jifjAB1yyy0seqn×kifkAC1y
21 20 rexbii nmyy0seqn×jifjAB1ynmyy0seqn×kifkAC1y
22 seqeq3 jifjAB1=kifkAC1seqm×jifjAB1=seqm×kifkAC1
23 15 22 ax-mp seqm×jifjAB1=seqm×kifkAC1
24 23 breq1i seqm×jifjAB1xseqm×kifkAC1x
25 6 21 24 3anbi123i Amnmyy0seqn×jifjAB1yseqm×jifjAB1xAmnmyy0seqn×kifkAC1yseqm×kifkAC1x
26 25 rexbii mAmnmyy0seqn×jifjAB1yseqm×jifjAB1xmAmnmyy0seqn×kifkAC1yseqm×kifkAC1x
27 4 5 1 cbvcsbw fn/jB=fn/kC
28 27 mpteq2i nfn/jB=nfn/kC
29 seqeq3 nfn/jB=nfn/kCseq1×nfn/jB=seq1×nfn/kC
30 28 29 ax-mp seq1×nfn/jB=seq1×nfn/kC
31 30 fveq1i seq1×nfn/jBm=seq1×nfn/kCm
32 31 eqeq2i x=seq1×nfn/jBmx=seq1×nfn/kCm
33 32 anbi2i f:1m1-1 ontoAx=seq1×nfn/jBmf:1m1-1 ontoAx=seq1×nfn/kCm
34 33 exbii ff:1m1-1 ontoAx=seq1×nfn/jBmff:1m1-1 ontoAx=seq1×nfn/kCm
35 34 rexbii mff:1m1-1 ontoAx=seq1×nfn/jBmmff:1m1-1 ontoAx=seq1×nfn/kCm
36 26 35 orbi12i mAmnmyy0seqn×jifjAB1yseqm×jifjAB1xmff:1m1-1 ontoAx=seq1×nfn/jBmmAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
37 36 iotabii ιx|mAmnmyy0seqn×jifjAB1yseqm×jifjAB1xmff:1m1-1 ontoAx=seq1×nfn/jBm=ιx|mAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
38 df-prod jAB=ιx|mAmnmyy0seqn×jifjAB1yseqm×jifjAB1xmff:1m1-1 ontoAx=seq1×nfn/jBm
39 df-prod kAC=ιx|mAmnmyy0seqn×kifkAC1yseqm×kifkAC1xmff:1m1-1 ontoAx=seq1×nfn/kCm
40 37 38 39 3eqtr4i jAB=kAC