Metamath Proof Explorer


Theorem cbvprodvw2

Description: Change bound variable and the set of integers in a product, using implicit substitution. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvprodvw2.1 A = B
cbvprodvw2.2 j = k C = D
Assertion cbvprodvw2 j A C = k B D

Proof

Step Hyp Ref Expression
1 cbvprodvw2.1 A = B
2 cbvprodvw2.2 j = k C = D
3 1 sseq1i A m B m
4 1 eleq2i j A j B
5 eleq1w j = k j B k B
6 4 5 bitrid j = k j A k B
7 6 2 ifbieq1d j = k if j A C 1 = if k B D 1
8 7 cbvmptv j if j A C 1 = k if k B D 1
9 seqeq3 j if j A C 1 = k if k B D 1 seq n × j if j A C 1 = seq n × k if k B D 1
10 8 9 ax-mp seq n × j if j A C 1 = seq n × k if k B D 1
11 10 breq1i seq n × j if j A C 1 y seq n × k if k B D 1 y
12 11 anbi2i y 0 seq n × j if j A C 1 y y 0 seq n × k if k B D 1 y
13 12 exbii y y 0 seq n × j if j A C 1 y y y 0 seq n × k if k B D 1 y
14 13 rexbii n m y y 0 seq n × j if j A C 1 y n m y y 0 seq n × k if k B D 1 y
15 seqeq3 j if j A C 1 = k if k B D 1 seq m × j if j A C 1 = seq m × k if k B D 1
16 8 15 ax-mp seq m × j if j A C 1 = seq m × k if k B D 1
17 16 breq1i seq m × j if j A C 1 x seq m × k if k B D 1 x
18 3 14 17 3anbi123i A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x
19 18 rexbii m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x
20 f1oeq3 A = B f : 1 m 1-1 onto A f : 1 m 1-1 onto B
21 1 20 ax-mp f : 1 m 1-1 onto A f : 1 m 1-1 onto B
22 2 cbvcsbv f n / j C = f n / k D
23 22 mpteq2i n f n / j C = n f n / k D
24 seqeq3 n f n / j C = n f n / k D seq 1 × n f n / j C = seq 1 × n f n / k D
25 23 24 ax-mp seq 1 × n f n / j C = seq 1 × n f n / k D
26 25 fveq1i seq 1 × n f n / j C m = seq 1 × n f n / k D m
27 26 eqeq2i x = seq 1 × n f n / j C m x = seq 1 × n f n / k D m
28 21 27 anbi12i f : 1 m 1-1 onto A x = seq 1 × n f n / j C m f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
29 28 exbii f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
30 29 rexbii m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
31 19 30 orbi12i m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
32 31 iotabii ι x | m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m = ι x | m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
33 df-prod j A C = ι x | m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m
34 df-prod k B D = ι x | m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
35 32 33 34 3eqtr4i j A C = k B D