Metamath Proof Explorer


Theorem cdlemb

Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in Crawley p. 112. (Contributed by NM, 8-May-2012)

Ref Expression
Hypotheses cdlemb.b B=BaseK
cdlemb.l ˙=K
cdlemb.j ˙=joinK
cdlemb.u 1˙=1.K
cdlemb.c C=K
cdlemb.a A=AtomsK
Assertion cdlemb KHLPAQAXBPQXC1˙¬P˙X¬Q˙XrA¬r˙X¬r˙P˙Q

Proof

Step Hyp Ref Expression
1 cdlemb.b B=BaseK
2 cdlemb.l ˙=K
3 cdlemb.j ˙=joinK
4 cdlemb.u 1˙=1.K
5 cdlemb.c C=K
6 cdlemb.a A=AtomsK
7 simp11 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XKHL
8 simp12 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XPA
9 simp13 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XQA
10 simp2l KHLPAQAXBPQXC1˙¬P˙X¬Q˙XXB
11 simp2r KHLPAQAXBPQXC1˙¬P˙X¬Q˙XPQ
12 simp31 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XXC1˙
13 simp32 KHLPAQAXBPQXC1˙¬P˙X¬Q˙X¬P˙X
14 eqid meetK=meetK
15 1 2 3 14 4 5 6 1cvrat KHLPAQAXBPQXC1˙¬P˙XP˙QmeetKXA
16 7 8 9 10 11 12 13 15 syl133anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XP˙QmeetKXA
17 7 hllatd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XKLat
18 1 6 atbase PAPB
19 8 18 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XPB
20 1 6 atbase QAQB
21 9 20 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XQB
22 1 3 latjcl KLatPBQBP˙QB
23 17 19 21 22 syl3anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XP˙QB
24 1 2 14 latmle2 KLatP˙QBXBP˙QmeetKX˙X
25 17 23 10 24 syl3anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XP˙QmeetKX˙X
26 eqid <K=<K
27 1 2 26 4 5 6 1cvratlt KHLP˙QmeetKXAXBXC1˙P˙QmeetKX˙XP˙QmeetKX<KX
28 7 16 10 12 25 27 syl32anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XP˙QmeetKX<KX
29 1 26 6 2atlt KHLP˙QmeetKXAXBP˙QmeetKX<KXuAuP˙QmeetKXu<KX
30 7 16 10 28 29 syl31anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KX
31 simpl11 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXKHL
32 simpl12 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXPA
33 simprl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXuA
34 simpl32 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KX¬P˙X
35 simprrr KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXu<KX
36 simpl2l KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXXB
37 2 26 pltle KHLuAXBu<KXu˙X
38 31 33 36 37 syl3anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXu<KXu˙X
39 35 38 mpd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXu˙X
40 breq1 P=uP˙Xu˙X
41 39 40 syl5ibrcom KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXP=uP˙X
42 41 necon3bd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KX¬P˙XPu
43 34 42 mpd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXPu
44 2 3 6 hlsupr KHLPAuAPurArPrur˙P˙u
45 31 32 33 43 44 syl31anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrArPrur˙P˙u
46 eqid P˙QmeetKX=P˙QmeetKX
47 1 2 3 4 5 6 26 14 46 cdlemblem KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrArPrur˙P˙u¬r˙X¬r˙P˙Q
48 47 3exp KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrArPrur˙P˙u¬r˙X¬r˙P˙Q
49 48 exp4a KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrArPrur˙P˙u¬r˙X¬r˙P˙Q
50 49 imp KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrArPrur˙P˙u¬r˙X¬r˙P˙Q
51 50 reximdvai KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrArPrur˙P˙urA¬r˙X¬r˙P˙Q
52 45 51 mpd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuP˙QmeetKXu<KXrA¬r˙X¬r˙P˙Q
53 30 52 rexlimddv KHLPAQAXBPQXC1˙¬P˙X¬Q˙XrA¬r˙X¬r˙P˙Q