Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemb.b |
|- B = ( Base ` K ) |
2 |
|
cdlemb.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemb.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemb.u |
|- .1. = ( 1. ` K ) |
5 |
|
cdlemb.c |
|- C = ( |
6 |
|
cdlemb.a |
|- A = ( Atoms ` K ) |
7 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> K e. HL ) |
8 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> P e. A ) |
9 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> Q e. A ) |
10 |
|
simp2l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> X e. B ) |
11 |
|
simp2r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> P =/= Q ) |
12 |
|
simp31 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> X C .1. ) |
13 |
|
simp32 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> -. P .<_ X ) |
14 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
15 |
1 2 3 14 4 5 6
|
1cvrat |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P =/= Q /\ X C .1. /\ -. P .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) e. A ) |
16 |
7 8 9 10 11 12 13 15
|
syl133anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) e. A ) |
17 |
7
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> K e. Lat ) |
18 |
1 6
|
atbase |
|- ( P e. A -> P e. B ) |
19 |
8 18
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> P e. B ) |
20 |
1 6
|
atbase |
|- ( Q e. A -> Q e. B ) |
21 |
9 20
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> Q e. B ) |
22 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
23 |
17 19 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( P .\/ Q ) e. B ) |
24 |
1 2 14
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ X e. B ) -> ( ( P .\/ Q ) ( meet ` K ) X ) .<_ X ) |
25 |
17 23 10 24
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) .<_ X ) |
26 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
27 |
1 2 26 4 5 6
|
1cvratlt |
|- ( ( ( K e. HL /\ ( ( P .\/ Q ) ( meet ` K ) X ) e. A /\ X e. B ) /\ ( X C .1. /\ ( ( P .\/ Q ) ( meet ` K ) X ) .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) ( lt ` K ) X ) |
28 |
7 16 10 12 25 27
|
syl32anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) ( lt ` K ) X ) |
29 |
1 26 6
|
2atlt |
|- ( ( ( K e. HL /\ ( ( P .\/ Q ) ( meet ` K ) X ) e. A /\ X e. B ) /\ ( ( P .\/ Q ) ( meet ` K ) X ) ( lt ` K ) X ) -> E. u e. A ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) |
30 |
7 16 10 28 29
|
syl31anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> E. u e. A ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) |
31 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> K e. HL ) |
32 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> P e. A ) |
33 |
|
simprl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> u e. A ) |
34 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> -. P .<_ X ) |
35 |
|
simprrr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> u ( lt ` K ) X ) |
36 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> X e. B ) |
37 |
2 26
|
pltle |
|- ( ( K e. HL /\ u e. A /\ X e. B ) -> ( u ( lt ` K ) X -> u .<_ X ) ) |
38 |
31 33 36 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( u ( lt ` K ) X -> u .<_ X ) ) |
39 |
35 38
|
mpd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> u .<_ X ) |
40 |
|
breq1 |
|- ( P = u -> ( P .<_ X <-> u .<_ X ) ) |
41 |
39 40
|
syl5ibrcom |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( P = u -> P .<_ X ) ) |
42 |
41
|
necon3bd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( -. P .<_ X -> P =/= u ) ) |
43 |
34 42
|
mpd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> P =/= u ) |
44 |
2 3 6
|
hlsupr |
|- ( ( ( K e. HL /\ P e. A /\ u e. A ) /\ P =/= u ) -> E. r e. A ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) |
45 |
31 32 33 43 44
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> E. r e. A ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) |
46 |
|
eqid |
|- ( ( P .\/ Q ) ( meet ` K ) X ) = ( ( P .\/ Q ) ( meet ` K ) X ) |
47 |
1 2 3 4 5 6 26 14 46
|
cdlemblem |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) /\ ( r e. A /\ ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) |
48 |
47
|
3exp |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) -> ( ( r e. A /\ ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) ) |
49 |
48
|
exp4a |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> ( ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) -> ( r e. A -> ( ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) ) ) |
50 |
49
|
imp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( r e. A -> ( ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) -> ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) ) |
51 |
50
|
reximdvai |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> ( E. r e. A ( r =/= P /\ r =/= u /\ r .<_ ( P .\/ u ) ) -> E. r e. A ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) ) |
52 |
45 51
|
mpd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) /\ ( u e. A /\ ( u =/= ( ( P .\/ Q ) ( meet ` K ) X ) /\ u ( lt ` K ) X ) ) ) -> E. r e. A ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) |
53 |
30 52
|
rexlimddv |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( X e. B /\ P =/= Q ) /\ ( X C .1. /\ -. P .<_ X /\ -. Q .<_ X ) ) -> E. r e. A ( -. r .<_ X /\ -. r .<_ ( P .\/ Q ) ) ) |