Metamath Proof Explorer


Theorem cdleme11fN

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
cdleme11.c C=P˙S˙W
cdleme11.d D=P˙T˙W
cdleme11.f F=S˙U˙Q˙P˙S˙W
Assertion cdleme11fN KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFC

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 cdleme11.c C=P˙S˙W
8 cdleme11.d D=P˙T˙W
9 cdleme11.f F=S˙U˙Q˙P˙S˙W
10 simp1l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QKHL
11 10 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QKLat
12 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QPA
13 eqid BaseK=BaseK
14 13 4 atbase PAPBaseK
15 12 14 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QPBaseK
16 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QSA
17 13 4 atbase SASBaseK
18 16 17 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QSBaseK
19 13 2 latjcl KLatPBaseKSBaseKP˙SBaseK
20 11 15 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QP˙SBaseK
21 simp1r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QWH
22 13 5 lhpbase WHWBaseK
23 21 22 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QWBaseK
24 13 1 3 latmle2 KLatP˙SBaseKWBaseKP˙S˙W˙W
25 11 20 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QP˙S˙W˙W
26 7 25 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QC˙W
27 1 2 3 4 5 6 9 cdleme3 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬F˙W
28 nbrne2 C˙W¬F˙WCF
29 28 necomd C˙W¬F˙WFC
30 26 27 29 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFC