Metamath Proof Explorer


Theorem cdleme13

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, " and are centrally perspective." F and G represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
Assertion cdleme13 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 1 2 3 4 5 6 7 8 cdleme12 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G=U
10 9 6 eqtrdi KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G=P˙Q˙W
11 simp1l KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TKHL
12 11 hllatd KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TKLat
13 simp21l KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TPA
14 simp22 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TQA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPAQAP˙QBaseK
17 11 13 14 16 syl3anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TP˙QBaseK
18 simp1r KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TWH
19 15 5 lhpbase WHWBaseK
20 18 19 syl KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TWBaseK
21 15 1 3 latmle1 KLatP˙QBaseKWBaseKP˙Q˙W˙P˙Q
22 12 17 20 21 syl3anc KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TP˙Q˙W˙P˙Q
23 10 22 eqbrtrd KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G˙P˙Q