Metamath Proof Explorer


Theorem cdleme23a

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Dec-2012)

Ref Expression
Hypotheses cdleme23.b B=BaseK
cdleme23.l ˙=K
cdleme23.j ˙=joinK
cdleme23.m ˙=meetK
cdleme23.a A=AtomsK
cdleme23.h H=LHypK
cdleme23.v V=S˙T˙X˙W
Assertion cdleme23a KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XV˙W

Proof

Step Hyp Ref Expression
1 cdleme23.b B=BaseK
2 cdleme23.l ˙=K
3 cdleme23.j ˙=joinK
4 cdleme23.m ˙=meetK
5 cdleme23.a A=AtomsK
6 cdleme23.h H=LHypK
7 cdleme23.v V=S˙T˙X˙W
8 simp11l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKHL
9 8 hllatd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKLat
10 simp12l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XSA
11 simp13l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XTA
12 1 3 5 hlatjcl KHLSATAS˙TB
13 8 10 11 12 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙TB
14 simp2l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XXB
15 simp11r KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XWH
16 1 6 lhpbase WHWB
17 15 16 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XWB
18 1 4 latmcl KLatXBWBX˙WB
19 9 14 17 18 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XX˙WB
20 1 4 latmcl KLatS˙TBX˙WBS˙T˙X˙WB
21 9 13 19 20 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙WB
22 1 2 4 latmle2 KLatS˙TBX˙WBS˙T˙X˙W˙X˙W
23 9 13 19 22 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙W˙X˙W
24 1 2 4 latmle2 KLatXBWBX˙W˙W
25 9 14 17 24 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XX˙W˙W
26 1 2 9 21 19 17 23 25 lattrd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙W˙W
27 7 26 eqbrtrid KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XV˙W