Metamath Proof Explorer


Theorem cdleme27a

Description: Part of proof of Lemma E in Crawley p. 113. cdleme26f with s and t swapped (this case is not mentioned by them). If s <_ t \/ v, then f(s) <_ f_s(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 3-Feb-2013)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme27.u U=P˙Q˙W
cdleme27.f F=s˙U˙Q˙P˙s˙W
cdleme27.z Z=z˙U˙Q˙P˙z˙W
cdleme27.n N=P˙Q˙Z˙s˙z˙W
cdleme27.d D=ιuB|zA¬z˙W¬z˙P˙Qu=N
cdleme27.c C=ifs˙P˙QDF
cdleme27.g G=t˙U˙Q˙P˙t˙W
cdleme27.o O=P˙Q˙Z˙t˙z˙W
cdleme27.e E=ιuB|zA¬z˙W¬z˙P˙Qu=O
cdleme27.y Y=ift˙P˙QEG
Assertion cdleme27a KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme27.u U=P˙Q˙W
8 cdleme27.f F=s˙U˙Q˙P˙s˙W
9 cdleme27.z Z=z˙U˙Q˙P˙z˙W
10 cdleme27.n N=P˙Q˙Z˙s˙z˙W
11 cdleme27.d D=ιuB|zA¬z˙W¬z˙P˙Qu=N
12 cdleme27.c C=ifs˙P˙QDF
13 cdleme27.g G=t˙U˙Q˙P˙t˙W
14 cdleme27.o O=P˙Q˙Z˙t˙z˙W
15 cdleme27.e E=ιuB|zA¬z˙W¬z˙P˙Qu=O
16 cdleme27.y Y=ift˙P˙QEG
17 simp211 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QKHLWH
18 simp221 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QPA¬P˙W
19 simp222 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QQA¬Q˙W
20 simp213 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QsA¬s˙W
21 simp223 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QtA¬t˙W
22 simp23r s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QVAV˙W
23 simp212 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QPQ
24 simp1l s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙Qs˙P˙Q
25 simp1r s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙Qt˙P˙Q
26 23 24 25 3jca s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QPQs˙P˙Qt˙P˙Q
27 simp3 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙Qt˙V=P˙Q
28 1 2 3 4 5 6 7 9 10 14 11 15 cdleme26ee KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WtA¬t˙WVAV˙WPQs˙P˙Qt˙P˙Qt˙V=P˙QD˙E˙V
29 17 18 19 20 21 22 26 27 28 syl332anc s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QD˙E˙V
30 29 3expia s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙V=P˙QD˙E˙V
31 simp1r s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Qt˙P˙Q
32 simp11l KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WKHL
33 32 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QKHL
34 simp13l KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WsA
35 34 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QsA
36 simp23l KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WtA
37 36 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QtA
38 simp3ll KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wst
39 38 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Qst
40 35 37 39 3jca s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QsAtAst
41 simp21l KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPA
42 41 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QPA
43 simp22l KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WQA
44 43 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QQA
45 simp212 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QPQ
46 simp3rl KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WVA
47 46 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QVA
48 simp3 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Qt˙VP˙Q
49 simp3lr KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Ws˙t˙V
50 49 3ad2ant2 s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Qs˙t˙V
51 simp1l s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Qs˙P˙Q
52 48 50 51 3jca s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Qt˙VP˙Qs˙t˙Vs˙P˙Q
53 2 3 4 5 6 cdleme22b KHLsAtAstPAQAPQVAt˙VP˙Qs˙t˙Vs˙P˙Q¬t˙P˙Q
54 33 40 42 44 45 47 52 53 syl232anc s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙Q¬t˙P˙Q
55 31 54 pm2.21dd s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QD˙E˙V
56 55 3expia s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙VP˙QD˙E˙V
57 30 56 pm2.61dne s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WD˙E˙V
58 iftrue s˙P˙Qifs˙P˙QDF=D
59 12 58 eqtrid s˙P˙QC=D
60 59 ad2antrr s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC=D
61 iftrue t˙P˙Qift˙P˙QEG=E
62 16 61 eqtrid t˙P˙QY=E
63 62 oveq1d t˙P˙QY˙V=E˙V
64 63 ad2antlr s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WY˙V=E˙V
65 57 60 64 3brtr4d s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
66 65 ex s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
67 simpr11 s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WKHLWH
68 simpr12 s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPQ
69 simpll s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Ws˙P˙Q
70 68 69 jca s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPQs˙P˙Q
71 simpr23 s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WtA¬t˙W
72 simpr21 s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPA¬P˙W
73 simpr22 s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WQA¬Q˙W
74 simpr13 s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WsA¬s˙W
75 simplr s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙W¬t˙P˙Q
76 simpr3l s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wsts˙t˙V
77 simpr3r s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WVAV˙W
78 eqid P˙Q˙G˙s˙t˙W=P˙Q˙G˙s˙t˙W
79 eqid ιuB|tA¬t˙W¬t˙P˙Qu=P˙Q˙G˙s˙t˙W=ιuB|tA¬t˙W¬t˙P˙Qu=P˙Q˙G˙s˙t˙W
80 9 10 13 78 11 79 cdleme25cv D=ιuB|tA¬t˙W¬t˙P˙Qu=P˙Q˙G˙s˙t˙W
81 1 2 3 4 5 6 7 13 78 80 cdleme26f KHLWHPQs˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WsA¬s˙W¬t˙P˙Qsts˙t˙VVAV˙WD˙G˙V
82 67 70 71 72 73 74 75 76 77 81 syl333anc s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WD˙G˙V
83 59 ad2antrr s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC=D
84 iffalse ¬t˙P˙Qift˙P˙QEG=G
85 16 84 eqtrid ¬t˙P˙QY=G
86 85 oveq1d ¬t˙P˙QY˙V=G˙V
87 86 ad2antlr s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WY˙V=G˙V
88 82 83 87 3brtr4d s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
89 88 ex s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
90 simpr11 ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WKHLWH
91 simpr12 ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPQ
92 simplr ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wt˙P˙Q
93 91 92 jca ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPQt˙P˙Q
94 simpr13 ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WsA¬s˙W
95 simpr21 ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPA¬P˙W
96 simpr22 ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WQA¬Q˙W
97 simpr23 ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WtA¬t˙W
98 simpll ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙W¬s˙P˙Q
99 simpr3l ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wsts˙t˙V
100 simpr3r ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WVAV˙W
101 eqid P˙Q˙F˙t˙s˙W=P˙Q˙F˙t˙s˙W
102 eqid ιuB|sA¬s˙W¬s˙P˙Qu=P˙Q˙F˙t˙s˙W=ιuB|sA¬s˙W¬s˙P˙Qu=P˙Q˙F˙t˙s˙W
103 9 14 8 101 15 102 cdleme25cv E=ιuB|sA¬s˙W¬s˙P˙Qu=P˙Q˙F˙t˙s˙W
104 1 2 3 4 5 6 7 8 101 103 cdleme26f2 KHLWHPQt˙P˙QsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙W¬s˙P˙Qsts˙t˙VVAV˙WF˙E˙V
105 90 93 94 95 96 97 98 99 100 104 syl333anc ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WF˙E˙V
106 iffalse ¬s˙P˙Qifs˙P˙QDF=F
107 12 106 eqtrid ¬s˙P˙QC=F
108 107 ad2antrr ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC=F
109 63 ad2antlr ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WY˙V=E˙V
110 105 108 109 3brtr4d ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
111 110 ex ¬s˙P˙Qt˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
112 simpr11 ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WKHLWH
113 simpr23 ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WtA¬t˙W
114 simplr ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙W¬t˙P˙Q
115 simpll ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙W¬s˙P˙Q
116 simpr12 ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPQ
117 114 115 116 3jca ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙W¬t˙P˙Q¬s˙P˙QPQ
118 simpr21 ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WPA¬P˙W
119 simpr22 ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WQA¬Q˙W
120 simpr13 ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WsA¬s˙W
121 simpr3l ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙Wsts˙t˙V
122 simpr3r ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WVAV˙W
123 2 3 4 5 6 7 8 13 cdleme22g KHLWHtA¬t˙W¬t˙P˙Q¬s˙P˙QPQPA¬P˙WQA¬Q˙WsA¬s˙Wsts˙t˙VVAV˙WF˙G˙V
124 112 113 117 118 119 120 121 122 123 syl323anc ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WF˙G˙V
125 107 ad2antrr ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC=F
126 86 ad2antlr ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WY˙V=G˙V
127 124 125 126 3brtr4d ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
128 127 ex ¬s˙P˙Q¬t˙P˙QKHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V
129 66 89 111 128 4cases KHLWHPQsA¬s˙WPA¬P˙WQA¬Q˙WtA¬t˙Wsts˙t˙VVAV˙WC˙Y˙V