Metamath Proof Explorer


Theorem cdleme29ex

Description: Lemma for cdleme29b . (Compare cdleme25a .) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme27.u U=P˙Q˙W
cdleme27.f F=s˙U˙Q˙P˙s˙W
cdleme27.z Z=z˙U˙Q˙P˙z˙W
cdleme27.n N=P˙Q˙Z˙s˙z˙W
cdleme27.d D=ιuB|zA¬z˙W¬z˙P˙Qu=N
cdleme27.c C=ifs˙P˙QDF
Assertion cdleme29ex KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙Ws˙X˙W=XC˙X˙WB

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme27.u U=P˙Q˙W
8 cdleme27.f F=s˙U˙Q˙P˙s˙W
9 cdleme27.z Z=z˙U˙Q˙P˙z˙W
10 cdleme27.n N=P˙Q˙Z˙s˙z˙W
11 cdleme27.d D=ιuB|zA¬z˙W¬z˙P˙Qu=N
12 cdleme27.c C=ifs˙P˙QDF
13 simp11 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WKHLWH
14 simp3 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WXB¬X˙W
15 1 2 3 4 5 6 lhpmcvr2 KHLWHXB¬X˙WsA¬s˙Ws˙X˙W=X
16 13 14 15 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙Ws˙X˙W=X
17 simp11l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WKHL
18 17 adantr KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WKHL
19 18 hllatd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WKLat
20 simp11r KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WWH
21 20 adantr KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WWH
22 simpl12 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WPA¬P˙W
23 simpl13 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WQA¬Q˙W
24 simpr KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WsA¬s˙W
25 simpl2 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WPQ
26 1 2 3 4 5 6 7 8 9 10 11 12 cdleme27cl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQCB
27 18 21 22 23 24 25 26 syl222anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WCB
28 simpl3l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WXB
29 1 6 lhpbase WHWB
30 21 29 syl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WWB
31 1 4 latmcl KLatXBWBX˙WB
32 19 28 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WX˙WB
33 1 3 latjcl KLatCBX˙WBC˙X˙WB
34 19 27 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WC˙X˙WB
35 34 expr KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙WC˙X˙WB
36 35 adantrd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙Ws˙X˙W=XC˙X˙WB
37 36 ancld KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙Ws˙X˙W=X¬s˙Ws˙X˙W=XC˙X˙WB
38 37 reximdva KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙Ws˙X˙W=XsA¬s˙Ws˙X˙W=XC˙X˙WB
39 16 38 mpd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WsA¬s˙Ws˙X˙W=XC˙X˙WB