Metamath Proof Explorer


Theorem cdleme32d

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 20-Feb-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32d KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YFX˙FY

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 simp11 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YKHLWH
16 simp21 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YXB
17 simp23r KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙Y¬X˙W
18 1 2 3 4 5 6 lhpmcvr2 KHLWHXB¬X˙WsA¬s˙Ws˙X˙W=X
19 15 16 17 18 syl12anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=X
20 nfv sKHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙Y
21 nfcv _sB
22 nfv sPQ¬x˙W
23 nfra1 ssA¬s˙Ws˙x˙W=xz=N˙x˙W
24 23 21 nfriota _sιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
25 13 24 nfcxfr _sO
26 nfcv _sx
27 22 25 26 nfif _sifPQ¬x˙WOx
28 21 27 nfmpt _sxBifPQ¬x˙WOx
29 14 28 nfcxfr _sF
30 nfcv _sX
31 29 30 nffv _sFX
32 nfcv _s˙
33 nfcv _sY
34 29 33 nffv _sFY
35 31 32 34 nfbr sFX˙FY
36 simpl1 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XKHLWHPA¬P˙WQA¬Q˙W
37 simpl2 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XXBYBPQ¬X˙W
38 simprl KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XsA
39 simprrl KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=X¬s˙W
40 38 39 jca KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XsA¬s˙W
41 simprrr KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=Xs˙X˙W=X
42 simpl3 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XX˙Y
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32c KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFX˙FY
44 36 37 40 41 42 43 syl113anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XFX˙FY
45 44 exp32 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XFX˙FY
46 20 35 45 rexlimd KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YsA¬s˙Ws˙X˙W=XFX˙FY
47 19 46 mpd KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WX˙YFX˙FY