Metamath Proof Explorer


Theorem cdleme39a

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. E , Y , G , Z serve as f(t), f(u), f_t( R ), f_t( S ). Put hypotheses of cdleme38n in convention of cdleme32sn1awN . TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013)

Ref Expression
Hypotheses cdleme39.l ˙ = K
cdleme39.j ˙ = join K
cdleme39.m ˙ = meet K
cdleme39.a A = Atoms K
cdleme39.h H = LHyp K
cdleme39.u U = P ˙ Q ˙ W
cdleme39.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdleme39.g G = P ˙ Q ˙ E ˙ R ˙ t ˙ W
cdleme39a.v V = t ˙ E ˙ W
Assertion cdleme39a K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W G = R ˙ V ˙ E ˙ t ˙ R ˙ W

Proof

Step Hyp Ref Expression
1 cdleme39.l ˙ = K
2 cdleme39.j ˙ = join K
3 cdleme39.m ˙ = meet K
4 cdleme39.a A = Atoms K
5 cdleme39.h H = LHyp K
6 cdleme39.u U = P ˙ Q ˙ W
7 cdleme39.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
8 cdleme39.g G = P ˙ Q ˙ E ˙ R ˙ t ˙ W
9 cdleme39a.v V = t ˙ E ˙ W
10 simp11 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W K HL W H
11 simp12 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W P A
12 simp13 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W Q A
13 simp2 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W R A ¬ R ˙ W
14 simp3l K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W R ˙ P ˙ Q
15 1 2 3 4 5 6 cdleme4 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q = R ˙ U
16 10 11 12 13 14 15 syl131anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W P ˙ Q = R ˙ U
17 simp3r K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W t A ¬ t ˙ W
18 1 2 3 4 5 6 7 cdleme2 K HL W H P A Q A t A ¬ t ˙ W t ˙ E ˙ W = U
19 10 11 12 17 18 syl13anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W t ˙ E ˙ W = U
20 9 19 eqtrid K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W V = U
21 20 oveq2d K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W R ˙ V = R ˙ U
22 16 21 eqtr4d K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W P ˙ Q = R ˙ V
23 simp11l K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W K HL
24 simp2l K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W R A
25 simp3rl K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W t A
26 2 4 hlatjcom K HL R A t A R ˙ t = t ˙ R
27 23 24 25 26 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W R ˙ t = t ˙ R
28 27 oveq1d K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W R ˙ t ˙ W = t ˙ R ˙ W
29 28 oveq2d K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W E ˙ R ˙ t ˙ W = E ˙ t ˙ R ˙ W
30 22 29 oveq12d K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W P ˙ Q ˙ E ˙ R ˙ t ˙ W = R ˙ V ˙ E ˙ t ˙ R ˙ W
31 8 30 eqtrid K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q t A ¬ t ˙ W G = R ˙ V ˙ E ˙ t ˙ R ˙ W