Metamath Proof Explorer


Theorem cdleme40m

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT Use proof idea from cdleme32sn1awN . (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme40.b B=BaseK
cdleme40.l ˙=K
cdleme40.j ˙=joinK
cdleme40.m ˙=meetK
cdleme40.a A=AtomsK
cdleme40.h H=LHypK
cdleme40.u U=P˙Q˙W
cdleme40.e E=t˙U˙Q˙P˙t˙W
cdleme40.g G=P˙Q˙E˙s˙t˙W
cdleme40.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme40.n N=ifs˙P˙QID
cdleme40a1.y Y=P˙Q˙E˙R˙t˙W
cdleme40a1.c C=ιyB|tA¬t˙W¬t˙P˙Qy=Y
cdleme40.t T=v˙U˙Q˙P˙v˙W
cdleme40.f F=P˙Q˙T˙S˙v˙W
Assertion cdleme40m KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR/sNF

Proof

Step Hyp Ref Expression
1 cdleme40.b B=BaseK
2 cdleme40.l ˙=K
3 cdleme40.j ˙=joinK
4 cdleme40.m ˙=meetK
5 cdleme40.a A=AtomsK
6 cdleme40.h H=LHypK
7 cdleme40.u U=P˙Q˙W
8 cdleme40.e E=t˙U˙Q˙P˙t˙W
9 cdleme40.g G=P˙Q˙E˙s˙t˙W
10 cdleme40.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
11 cdleme40.n N=ifs˙P˙QID
12 cdleme40a1.y Y=P˙Q˙E˙R˙t˙W
13 cdleme40a1.c C=ιyB|tA¬t˙W¬t˙P˙Qy=Y
14 cdleme40.t T=v˙U˙Q˙P˙v˙W
15 cdleme40.f F=P˙Q˙T˙S˙v˙W
16 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QRA
17 simp3l1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR˙P˙Q
18 9 10 11 12 13 cdleme31sn1c RAR˙P˙QR/sN=C
19 16 17 18 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR/sN=C
20 1 fvexi BV
21 nfv tKHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q
22 nfra1 ttA¬t˙W¬t˙P˙Qy=Y
23 nfcv _tB
24 22 23 nfriota _tιyB|tA¬t˙W¬t˙P˙Qy=Y
25 13 24 nfcxfr _tC
26 nfcv _tF
27 25 26 nfne tCF
28 27 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtCF
29 13 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QC=ιyB|tA¬t˙W¬t˙P˙Qy=Y
30 neeq1 Y=CYFCF
31 30 adantl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QY=CYFCF
32 simpl1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QKHLWHPA¬P˙WQA¬Q˙W
33 simpl2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QPQRA¬R˙WSA¬S˙W
34 simpl3l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QR˙P˙QS˙P˙QRS
35 simprl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QtA
36 simprrl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙Q¬t˙W
37 simprrr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙Q¬t˙P˙Q
38 35 36 37 jca31 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QtA¬t˙W¬t˙P˙Q
39 simp3r1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QvA
40 simp3r2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q¬v˙W
41 simp3r3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q¬v˙P˙Q
42 39 40 41 jca31 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QvA¬v˙W¬v˙P˙Q
43 42 adantr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QvA¬v˙W¬v˙P˙Q
44 2 3 4 5 6 7 8 12 14 15 cdleme39n KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QvA¬v˙W¬v˙P˙QYF
45 32 33 34 38 43 44 syl113anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QYF
46 45 ex KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙QYF
47 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QKHLWHPA¬P˙WQA¬Q˙W
48 simp22r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙Q¬R˙W
49 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QPQ
50 1 2 3 4 5 6 7 8 12 13 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QCB
51 47 16 48 49 17 50 syl122anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QCB
52 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QKHLWH
53 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QPA¬P˙W
54 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QQA¬Q˙W
55 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQtA¬t˙W¬t˙P˙Q
56 52 53 54 49 55 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QtA¬t˙W¬t˙P˙Q
57 21 28 29 31 46 51 56 riotasv3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QBVCF
58 20 57 mpan2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QCF
59 19 58 eqnetrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRSvA¬v˙W¬v˙P˙QR/sNF