Metamath Proof Explorer


Theorem cdlemg17f

Description: TODO: fix comment. (Contributed by NM, 8-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17f KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FQ=FP˙GFP

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 1 2 3 4 5 6 7 cdlemg17e KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FQ=FP˙RG
9 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
10 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGT
11 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFT
12 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
13 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
14 9 11 12 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFPA¬FP˙W
15 1 2 3 4 5 6 7 trlval2 KHLWHGTFPA¬FP˙WRG=FP˙GFP˙W
16 9 10 14 15 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rRG=FP˙GFP˙W
17 16 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙RG=FP˙FP˙GFP˙W
18 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPA
19 1 4 5 6 ltrncoat KHLWHGTFTPAGFPA
20 9 10 11 18 19 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGFPA
21 eqid FP˙GFP˙W=FP˙GFP˙W
22 1 2 3 4 5 21 cdleme0cp KHLWHFPA¬FP˙WGFPAFP˙FP˙GFP˙W=FP˙GFP
23 9 14 20 22 syl12anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FP˙GFP˙W=FP˙GFP
24 8 17 23 3eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FQ=FP˙GFP