Metamath Proof Explorer


Theorem cdlemg1cN

Description: Any translation belongs to the set of functions constructed for cdleme . TODO: Fix comment. (Contributed by NM, 18-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg1c.l ˙=K
cdlemg1c.a A=AtomsK
cdlemg1c.h H=LHypK
cdlemg1c.t T=LTrnKW
Assertion cdlemg1cN KHLWHPA¬P˙WQA¬Q˙WFP=QFTF=ιfT|fP=Q

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙=K
2 cdlemg1c.a A=AtomsK
3 cdlemg1c.h H=LHypK
4 cdlemg1c.t T=LTrnKW
5 simpll1 KHLWHPA¬P˙WQA¬Q˙WFP=QFTKHLWH
6 simpll2 KHLWHPA¬P˙WQA¬Q˙WFP=QFTPA¬P˙W
7 simpr KHLWHPA¬P˙WQA¬Q˙WFP=QFTFT
8 1 2 3 4 cdlemeiota KHLWHPA¬P˙WFTF=ιfT|fP=FP
9 5 6 7 8 syl3anc KHLWHPA¬P˙WQA¬Q˙WFP=QFTF=ιfT|fP=FP
10 simplr KHLWHPA¬P˙WQA¬Q˙WFP=QFTFP=Q
11 10 eqeq2d KHLWHPA¬P˙WQA¬Q˙WFP=QFTfP=FPfP=Q
12 11 riotabidv KHLWHPA¬P˙WQA¬Q˙WFP=QFTιfT|fP=FP=ιfT|fP=Q
13 9 12 eqtrd KHLWHPA¬P˙WQA¬Q˙WFP=QFTF=ιfT|fP=Q
14 1 2 3 4 cdlemg1ci2 KHLWHPA¬P˙WQA¬Q˙WF=ιfT|fP=QFT
15 14 adantlr KHLWHPA¬P˙WQA¬Q˙WFP=QF=ιfT|fP=QFT
16 13 15 impbida KHLWHPA¬P˙WQA¬Q˙WFP=QFTF=ιfT|fP=Q