| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg2inv.h |  | 
						
							| 2 |  | cdlemg2inv.t |  | 
						
							| 3 |  | cdlemg2j.l |  | 
						
							| 4 |  | cdlemg2j.j |  | 
						
							| 5 |  | cdlemg2j.a |  | 
						
							| 6 |  | cdlemg2j.m |  | 
						
							| 7 |  | cdlemg2j.u |  | 
						
							| 8 | 1 2 3 4 5 6 7 | cdlemg2k |  | 
						
							| 9 | 8 | 3adant3l |  | 
						
							| 10 | 9 | fveq2d |  | 
						
							| 11 |  | simp1 |  | 
						
							| 12 |  | simp3l |  | 
						
							| 13 |  | simp3r |  | 
						
							| 14 |  | simp2l |  | 
						
							| 15 | 3 5 1 2 | ltrnel |  | 
						
							| 16 | 11 13 14 15 | syl3anc |  | 
						
							| 17 | 16 | simpld |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 5 | atbase |  | 
						
							| 20 | 17 19 | syl |  | 
						
							| 21 |  | simp2r |  | 
						
							| 22 | 3 5 1 2 | ltrnel |  | 
						
							| 23 | 11 13 21 22 | syl3anc |  | 
						
							| 24 | 23 | simpld |  | 
						
							| 25 | 18 5 | atbase |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 18 4 1 2 | ltrnj |  | 
						
							| 28 | 11 12 20 26 27 | syl112anc |  | 
						
							| 29 | 1 2 3 4 5 6 7 | cdlemg2fv2 |  | 
						
							| 30 | 11 14 21 16 12 29 | syl131anc |  | 
						
							| 31 | 10 28 30 | 3eqtr3d |  |