Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg2inv.h |
|
2 |
|
cdlemg2inv.t |
|
3 |
|
cdlemg2j.l |
|
4 |
|
cdlemg2j.j |
|
5 |
|
cdlemg2j.a |
|
6 |
|
cdlemg2j.m |
|
7 |
|
cdlemg2j.u |
|
8 |
|
simp1 |
|
9 |
|
simp23 |
|
10 |
|
simp1l |
|
11 |
10
|
hllatd |
|
12 |
|
simp23l |
|
13 |
|
eqid |
|
14 |
13 5
|
atbase |
|
15 |
12 14
|
syl |
|
16 |
|
simp1r |
|
17 |
|
simp21l |
|
18 |
|
simp22l |
|
19 |
3 4 6 5 1 7 13
|
cdleme0aa |
|
20 |
10 16 17 18 19
|
syl211anc |
|
21 |
13 4
|
latjcl |
|
22 |
11 15 20 21
|
syl3anc |
|
23 |
|
simp23r |
|
24 |
13 3 4
|
latlej1 |
|
25 |
11 15 20 24
|
syl3anc |
|
26 |
13 1
|
lhpbase |
|
27 |
16 26
|
syl |
|
28 |
13 3
|
lattr |
|
29 |
11 15 22 27 28
|
syl13anc |
|
30 |
25 29
|
mpand |
|
31 |
23 30
|
mtod |
|
32 |
22 31
|
jca |
|
33 |
|
simp3 |
|
34 |
|
eqid |
|
35 |
3 6 34 5 1
|
lhpmat |
|
36 |
8 9 35
|
syl2anc |
|
37 |
36
|
oveq1d |
|
38 |
13 4 5
|
hlatjcl |
|
39 |
10 17 18 38
|
syl3anc |
|
40 |
13 3 6
|
latmle2 |
|
41 |
11 39 27 40
|
syl3anc |
|
42 |
7 41
|
eqbrtrid |
|
43 |
13 3 4 6 5
|
atmod4i2 |
|
44 |
10 12 20 27 42 43
|
syl131anc |
|
45 |
|
hlol |
|
46 |
10 45
|
syl |
|
47 |
13 4 34
|
olj02 |
|
48 |
46 20 47
|
syl2anc |
|
49 |
37 44 48
|
3eqtr3d |
|
50 |
49
|
oveq2d |
|
51 |
1 2 3 4 5 6 13
|
cdlemg2fv |
|
52 |
8 9 32 33 50 51
|
syl122anc |
|
53 |
49
|
oveq2d |
|
54 |
52 53
|
eqtrd |
|