Metamath Proof Explorer


Theorem cdlemg2fv2

Description: Value of a translation in terms of an associated atom. TODO: FIX COMMENT. TODO: Is this useful elsewhere e.g. around cdlemeg46fjv that use more complex proofs? TODO: Use ltrnj to vastly simplify. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h H = LHyp K
cdlemg2inv.t T = LTrn K W
cdlemg2j.l ˙ = K
cdlemg2j.j ˙ = join K
cdlemg2j.a A = Atoms K
cdlemg2j.m ˙ = meet K
cdlemg2j.u U = P ˙ Q ˙ W
Assertion cdlemg2fv2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T F R ˙ U = F R ˙ U

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h H = LHyp K
2 cdlemg2inv.t T = LTrn K W
3 cdlemg2j.l ˙ = K
4 cdlemg2j.j ˙ = join K
5 cdlemg2j.a A = Atoms K
6 cdlemg2j.m ˙ = meet K
7 cdlemg2j.u U = P ˙ Q ˙ W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T K HL W H
9 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R A ¬ R ˙ W
10 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T K HL
11 10 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T K Lat
12 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R A
13 eqid Base K = Base K
14 13 5 atbase R A R Base K
15 12 14 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R Base K
16 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T W H
17 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T P A
18 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T Q A
19 3 4 6 5 1 7 13 cdleme0aa K HL W H P A Q A U Base K
20 10 16 17 18 19 syl211anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T U Base K
21 13 4 latjcl K Lat R Base K U Base K R ˙ U Base K
22 11 15 20 21 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ U Base K
23 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T ¬ R ˙ W
24 13 3 4 latlej1 K Lat R Base K U Base K R ˙ R ˙ U
25 11 15 20 24 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ R ˙ U
26 13 1 lhpbase W H W Base K
27 16 26 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T W Base K
28 13 3 lattr K Lat R Base K R ˙ U Base K W Base K R ˙ R ˙ U R ˙ U ˙ W R ˙ W
29 11 15 22 27 28 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ R ˙ U R ˙ U ˙ W R ˙ W
30 25 29 mpand K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ U ˙ W R ˙ W
31 23 30 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T ¬ R ˙ U ˙ W
32 22 31 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ U Base K ¬ R ˙ U ˙ W
33 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T F T
34 eqid 0. K = 0. K
35 3 6 34 5 1 lhpmat K HL W H R A ¬ R ˙ W R ˙ W = 0. K
36 8 9 35 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ W = 0. K
37 36 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ W ˙ U = 0. K ˙ U
38 13 4 5 hlatjcl K HL P A Q A P ˙ Q Base K
39 10 17 18 38 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T P ˙ Q Base K
40 13 3 6 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
41 11 39 27 40 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T P ˙ Q ˙ W ˙ W
42 7 41 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T U ˙ W
43 13 3 4 6 5 atmod4i2 K HL R A U Base K W Base K U ˙ W R ˙ W ˙ U = R ˙ U ˙ W
44 10 12 20 27 42 43 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ W ˙ U = R ˙ U ˙ W
45 hlol K HL K OL
46 10 45 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T K OL
47 13 4 34 olj02 K OL U Base K 0. K ˙ U = U
48 46 20 47 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T 0. K ˙ U = U
49 37 44 48 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ U ˙ W = U
50 49 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T R ˙ R ˙ U ˙ W = R ˙ U
51 1 2 3 4 5 6 13 cdlemg2fv K HL W H R A ¬ R ˙ W R ˙ U Base K ¬ R ˙ U ˙ W F T R ˙ R ˙ U ˙ W = R ˙ U F R ˙ U = F R ˙ R ˙ U ˙ W
52 8 9 32 33 50 51 syl122anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T F R ˙ U = F R ˙ R ˙ U ˙ W
53 49 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T F R ˙ R ˙ U ˙ W = F R ˙ U
54 52 53 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F T F R ˙ U = F R ˙ U