| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | cdlemg31.n |  | 
						
							| 9 |  | simp11l |  | 
						
							| 10 |  | simp11r |  | 
						
							| 11 | 9 10 | jca |  | 
						
							| 12 |  | simp13 |  | 
						
							| 13 |  | simp31 |  | 
						
							| 14 | 13 | necomd |  | 
						
							| 15 |  | simp12 |  | 
						
							| 16 |  | simp2r |  | 
						
							| 17 |  | simp32 |  | 
						
							| 18 | 1 4 5 6 7 | trlat |  | 
						
							| 19 | 11 15 16 17 18 | syl112anc |  | 
						
							| 20 | 1 5 6 7 | trlle |  | 
						
							| 21 | 11 16 20 | syl2anc |  | 
						
							| 22 |  | simp2l |  | 
						
							| 23 | 1 2 4 5 | lhp2atnle |  | 
						
							| 24 | 11 12 14 19 21 22 23 | syl321anc |  | 
						
							| 25 |  | simp12l |  | 
						
							| 26 |  | simp13l |  | 
						
							| 27 |  | simp2ll |  | 
						
							| 28 | 1 2 3 4 5 6 7 8 | cdlemg31a |  | 
						
							| 29 | 9 10 25 26 27 16 28 | syl222anc |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | simp111 |  | 
						
							| 32 |  | simp112 |  | 
						
							| 33 |  | simp3 |  | 
						
							| 34 | 33 | necomd |  | 
						
							| 35 |  | simp12l |  | 
						
							| 36 |  | simp133 |  | 
						
							| 37 |  | simp2 |  | 
						
							| 38 | 1 2 4 5 | lhp2atnle |  | 
						
							| 39 | 31 32 34 35 36 37 38 | syl312anc |  | 
						
							| 40 | 39 | 3expia |  | 
						
							| 41 | 40 | necon4ad |  | 
						
							| 42 | 30 41 | mpd |  | 
						
							| 43 | 1 2 3 4 5 6 7 8 | cdlemg31b |  | 
						
							| 44 | 9 10 25 26 27 16 43 | syl222anc |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 42 45 | eqbrtrrd |  | 
						
							| 47 | 24 46 | mtand |  |