Metamath Proof Explorer


Theorem cdlemg31c

Description: Show that when N is an atom, it is not under W . TODO: Is there a shorter direct proof? TODO: should we eliminate ( FP ) =/= P here? (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
Assertion cdlemg31c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A ¬ N ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A K HL
10 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A W H
11 9 10 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A K HL W H
12 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A Q A ¬ Q ˙ W
13 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A v R F
14 13 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A R F v
15 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A P A ¬ P ˙ W
16 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A F T
17 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A F P P
18 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W F T F P P R F A
19 11 15 16 17 18 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A R F A
20 1 5 6 7 trlle K HL W H F T R F ˙ W
21 11 16 20 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A R F ˙ W
22 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A v A v ˙ W
23 1 2 4 5 lhp2atnle K HL W H Q A ¬ Q ˙ W R F v R F A R F ˙ W v A v ˙ W ¬ v ˙ Q ˙ R F
24 11 12 14 19 21 22 23 syl321anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A ¬ v ˙ Q ˙ R F
25 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A P A
26 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A Q A
27 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A v A
28 1 2 3 4 5 6 7 8 cdlemg31a K HL W H P A Q A v A F T N ˙ P ˙ v
29 9 10 25 26 27 16 28 syl222anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ P ˙ v
30 29 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N ˙ P ˙ v
31 simp111 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v K HL W H
32 simp112 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v P A ¬ P ˙ W
33 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v N v
34 33 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v v N
35 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v v A v ˙ W
36 simp133 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v N A
37 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v N ˙ W
38 1 2 4 5 lhp2atnle K HL W H P A ¬ P ˙ W v N v A v ˙ W N A N ˙ W ¬ N ˙ P ˙ v
39 31 32 34 35 36 37 38 syl312anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v ¬ N ˙ P ˙ v
40 39 3expia K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N v ¬ N ˙ P ˙ v
41 40 necon4ad K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N ˙ P ˙ v N = v
42 30 41 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N = v
43 1 2 3 4 5 6 7 8 cdlemg31b K HL W H P A Q A v A F T N ˙ Q ˙ R F
44 9 10 25 26 27 16 43 syl222anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ Q ˙ R F
45 44 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W N ˙ Q ˙ R F
46 42 45 eqbrtrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A N ˙ W v ˙ Q ˙ R F
47 24 46 mtand K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W F T v R F F P P N A ¬ N ˙ W