Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
simp11l |
|
10 |
|
simp11r |
|
11 |
9 10
|
jca |
|
12 |
|
simp13 |
|
13 |
|
simp31 |
|
14 |
13
|
necomd |
|
15 |
|
simp12 |
|
16 |
|
simp2r |
|
17 |
|
simp32 |
|
18 |
1 4 5 6 7
|
trlat |
|
19 |
11 15 16 17 18
|
syl112anc |
|
20 |
1 5 6 7
|
trlle |
|
21 |
11 16 20
|
syl2anc |
|
22 |
|
simp2l |
|
23 |
1 2 4 5
|
lhp2atnle |
|
24 |
11 12 14 19 21 22 23
|
syl321anc |
|
25 |
|
simp12l |
|
26 |
|
simp13l |
|
27 |
|
simp2ll |
|
28 |
1 2 3 4 5 6 7 8
|
cdlemg31a |
|
29 |
9 10 25 26 27 16 28
|
syl222anc |
|
30 |
29
|
adantr |
|
31 |
|
simp111 |
|
32 |
|
simp112 |
|
33 |
|
simp3 |
|
34 |
33
|
necomd |
|
35 |
|
simp12l |
|
36 |
|
simp133 |
|
37 |
|
simp2 |
|
38 |
1 2 4 5
|
lhp2atnle |
|
39 |
31 32 34 35 36 37 38
|
syl312anc |
|
40 |
39
|
3expia |
|
41 |
40
|
necon4ad |
|
42 |
30 41
|
mpd |
|
43 |
1 2 3 4 5 6 7 8
|
cdlemg31b |
|
44 |
9 10 25 26 27 16 43
|
syl222anc |
|
45 |
44
|
adantr |
|
46 |
42 45
|
eqbrtrrd |
|
47 |
24 46
|
mtand |
|