Metamath Proof Explorer


Theorem cdlemg41

Description: Convert cdlemg40 to function composition. TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙=K
cdlemg35.j ˙=joinK
cdlemg35.m ˙=meetK
cdlemg35.a A=AtomsK
cdlemg35.h H=LHypK
cdlemg35.t T=LTrnKW
Assertion cdlemg41 KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙=K
2 cdlemg35.j ˙=joinK
3 cdlemg35.m ˙=meetK
4 cdlemg35.a A=AtomsK
5 cdlemg35.h H=LHypK
6 cdlemg35.t T=LTrnKW
7 1 2 3 4 5 6 cdlemg40 KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP˙W=Q˙FGQ˙W
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTKHLWH
9 simp3 KHLWHPA¬P˙WQA¬Q˙WFTGTFTGT
10 simp2ll KHLWHPA¬P˙WQA¬Q˙WFTGTPA
11 1 4 5 6 ltrncoval KHLWHFTGTPAFGP=FGP
12 8 9 10 11 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=FGP
13 12 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP=P˙FGP
14 13 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP˙W=P˙FGP˙W
15 simp2rl KHLWHPA¬P˙WQA¬Q˙WFTGTQA
16 1 4 5 6 ltrncoval KHLWHFTGTQAFGQ=FGQ
17 8 9 15 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGQ=FGQ
18 17 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙FGQ=Q˙FGQ
19 18 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙FGQ˙W=Q˙FGQ˙W
20 7 14 19 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTP˙FGP˙W=Q˙FGQ˙W