Metamath Proof Explorer


Theorem cdlemk22-3

Description: Part of proof of Lemma K of Crawley p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 7-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B=BaseK
cdlemk3.l ˙=K
cdlemk3.j ˙=joinK
cdlemk3.m ˙=meetK
cdlemk3.a A=AtomsK
cdlemk3.h H=LHypK
cdlemk3.t T=LTrnKW
cdlemk3.r R=trLKW
cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
Assertion cdlemk22-3 KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDDYGP=CYGP

Proof

Step Hyp Ref Expression
1 cdlemk3.b B=BaseK
2 cdlemk3.l ˙=K
3 cdlemk3.j ˙=joinK
4 cdlemk3.m ˙=meetK
5 cdlemk3.a A=AtomsK
6 cdlemk3.h H=LHypK
7 cdlemk3.t T=LTrnKW
8 cdlemk3.r R=trLKW
9 cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
11 eqid SC=SC
12 eqid eTιjT|jP=P˙Re˙SCP˙ReC-1=eTιjT|jP=P˙Re˙SCP˙ReC-1
13 eqid SD=SD
14 eqid eTιjT|jP=P˙Re˙SDP˙ReD-1=eTιjT|jP=P˙Re˙SDP˙ReD-1
15 1 2 3 4 5 6 7 8 9 11 12 13 14 cdlemk22 KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDeTιjT|jP=P˙Re˙SDP˙ReD-1GP=eTιjT|jP=P˙Re˙SCP˙ReC-1GP
16 simp13 KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDDT
17 simp212 KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDGT
18 1 2 3 4 5 6 7 8 9 10 13 14 cdlemkuu DTGTDYG=eTιjT|jP=P˙Re˙SDP˙ReD-1G
19 16 17 18 syl2anc KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDDYG=eTιjT|jP=P˙Re˙SDP˙ReD-1G
20 19 fveq1d KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDDYGP=eTιjT|jP=P˙Re˙SDP˙ReD-1GP
21 simp213 KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDCT
22 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkuu CTGTCYG=eTιjT|jP=P˙Re˙SCP˙ReC-1G
23 21 17 22 syl2anc KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDCYG=eTιjT|jP=P˙Re˙SCP˙ReC-1G
24 23 fveq1d KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDCYGP=eTιjT|jP=P˙Re˙SCP˙ReC-1GP
25 15 20 24 3eqtr4d KHLWHFTDTNTGTCTPA¬P˙WRF=RNFIBDIBGIBCIBRGRCRCRFRDRFRGRDRCRDDYGP=CYGP