Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the ( Rx ) =/= ( RC ) requirement from cdlemk23-3 using ( RC ) = ( RD ) . (Contributed by NM, 7-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk3.b | |
|
cdlemk3.l | |
||
cdlemk3.j | |
||
cdlemk3.m | |
||
cdlemk3.a | |
||
cdlemk3.h | |
||
cdlemk3.t | |
||
cdlemk3.r | |
||
cdlemk3.s | |
||
cdlemk3.u1 | |
||
Assertion | cdlemk24-3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk3.b | |
|
2 | cdlemk3.l | |
|
3 | cdlemk3.j | |
|
4 | cdlemk3.m | |
|
5 | cdlemk3.a | |
|
6 | cdlemk3.h | |
|
7 | cdlemk3.t | |
|
8 | cdlemk3.r | |
|
9 | cdlemk3.s | |
|
10 | cdlemk3.u1 | |
|
11 | simp31 | |
|
12 | simp32l | |
|
13 | simp331 | |
|
14 | simp32r | |
|
15 | 13 14 | neeqtrrd | |
16 | 12 15 | jca | |
17 | simp33 | |
|
18 | 11 16 17 | 3jca | |
19 | 1 2 3 4 5 6 7 8 9 10 | cdlemk23-3 | |
20 | 18 19 | syld3an3 | |